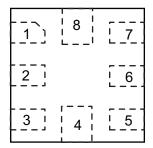


www.ti.com SCPS228 – MARCH 2011

Low Voltage 5-Bit Self-Timed, Single-Wire Output Expander

Check for Samples: TCA5405

FEATURES


- Operating Power-Supply Voltage Range of 1.65
 V to 3.6 V
- Five Independent Push-Pull Outputs
- Single Input (DIN) Controls State of All Outputs
- High-Current Drive Outputs Maximum Capability for Directly Driving LEDs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Media Players
- MP3 Players
- Portable Instrumentation

RUG PACKAGE (TOP VIEW)

TCA5405

PIN#	NAME	COMMENTS
1	VCC	Supply Voltage
2	DIN GND	Data Input
3		Ground
4	Q0	GPO
5	Q1	GPO
6	Q2	GPO
7	Q3	GPO
8	Q4	GPO

DESCRIPTION

The TCA5405 is a 5-bit output expander controlled using a single wire input. This device is ideal for portable applications as it has a wide VCC range of 1.65V to 3.6 V. The TCA5405 uses a self-timed serial data protocol with a single data input driven by a master device synchronized to an internal clock of that device. During a Setup phase, the bit period is sampled, then the TCA5405 generates its own internal clock synchronized to that of the Master device to sample the input over a five-bit-period Data Transfer phase and writes the bit states on the parallel outputs after the last bit is sampled. The TCA5405 is available in an 8-pin 1.5mm x 1.5mm RUG uQFN package.

ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	uQFN – RUG	Tape and Reel	TCA5405RUGR	6Y

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCPS228 – MARCH 2011 www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

APPLICATION DIAGRAM

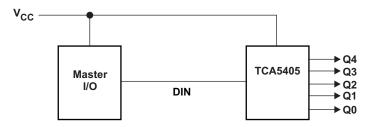


Figure 1. TCA5405 Application Diagram

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

	· · · · · · · · · · · · · · · · · · ·		MII	MAX	UNIT
V _{CC}	Supply voltage range	-0.	5 4.0	V	
VI	Input voltage range ⁽²⁾		-0.	5 4.0	V
Vo	Output voltage range ⁽²⁾	-0.	5 4.0	V	
I _{IK}	Input clamp current	V ₁ < 0		±20	mA
I _{OK}	Output clamp current	V _O < 0		±20	mA
I_{OL}	Continuous output low current	$V_O = 0$ to V_{CC}		50	mA
I _{OH}	Continuous output high current	$V_O = 0$ to V_{CC}		50	mA
	Continuous current through GND			200	mA
ICC	Continuous current through V _{CC}			160	
ΘJA	Package thermal impedance (3)	RUG package		243	°C/W
TSTG	Storage temperature range		-6	5 150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1.65	3.6	V
V_{IH}	High-level input voltage	DIN	0.7 × V _{CC}	$V_{CC} + 0.5$	V
V_{IL}	Low-level input voltage	DIN	-0.3	$0.3 \times V_{CC}$	V
I _{OH}	High-level output current	Q0-Q4		20	mA
I _{OL}	Low-level output current	Q0-Q4		20	mA
T _A	Operating free-air temperatu	ire	-40	85	°C

Submit Documentation Feedback

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 1.65 \text{ V}$ to 3.6 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{IK}	Input diode clamp voltage	I _I = -18 mA	1.65 V to 3.6 V	-1.2			V
V_{POR}	Power on reset voltage	$V_I = V_{CC}$ or GND, $I_O = 0$	1.65 V to 3.6 V		1	1.4	V
I _I	DIN	V _I = V _{CC} or GND	1.65 V to 3.6 V			±0.1	μΑ
I _{CC_STBY}	Standby Supply Current	V_I on DIN = V_{CC} or GND, $I_O = 0$	1.65 V to 3.6 V		1	2	μΑ
I _{CC_ACTIVE}	Active current during startup and data transfer					400	μΑ
C _I	DIN	V _I = V _{CC} or GND	1.65 V to 3.6 V		6	7	pF
			1.65 V	1.1			
V_{OH}	OUT-port high-level output voltage	$I_{OH} = -20 \text{ mA}$	2.3 V	1.7			V
			3.6 V	2.5			
			1.65 V			0.6	
V_{OL}	OUT-port low-level output voltage	I _{OL} = 20 mA	2.3 V			0.3	V
			3.6 V			0.25	

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CC} = 1.65 V to 3.6 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	vcc	MIN TYP	MAX	UNIT
t _{PER}	DIN period		1.65 V to 3.6 V	0.001	10	ms
t _{rise}	DIN rise time		1.65 V to 3.6 V		100	ns
t _{fall}	DIN fall time		1.65 V to 3.6 V		100	ns
f_{MIN}	Maximum switching frequency on DIN		1.65 V to 3.6 V	1		MHz
f_{MAX}	Minimum switching frequency on DIN		1.65 V to 3.6 V		10	kHz

PRINCIPLES OF OPERATION

The TCA5405 single-wire bus device has a single-bit Data Line Bus input and has five independent parallel push-pull buffered outputs. A single input is used to control the output state for the writing to these five outputs. This single-wire serial interface is similar to a UART type interface but operates over a wide range of values for the bit period.

The TCA5405 uses a self-timed serial data protocol with a single data input driven by a master device synchronized to an internal clock of that device. During a Setup phase, the bit period is sampled, then the TCA5405 generates its own internal clock synchronized to that of the Master device to sample the input over a five-bit-period Data Transfer phase and writes the bit states on the parallel outputs after the last bit is sampled. The Master output bit must be transmitted via a Totem-pole output structure to ensure proper interpretation of the incoming serial burst.

The single-wire unidirectional interface operation is defined in Figure 2.

INTERFACE TIMING

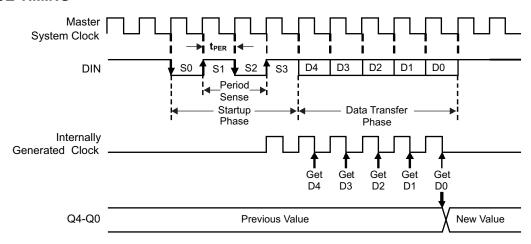


Figure 2. Definition of Single-Wire Interface

To function correctly, the bit period (tPER) of the DIN signal must be constant over the entire data transaction. Therefore, DIN should be driven by a stable periodic signal internal to the Master device (see Figure 2 - Master System Clock). The bit period can be any value between 1µS and 10mS.

The TCA5405 first detects the falling transition on DIN at the beginning of the S0 period to signal the start of an incoming data burst. Next, over the period of S1 and S2, between the two rising edges on DIN, a timer measures the duration of S1/S2 to calculate the bit period of the incoming signal. After that, the TCA5405 uses that value to generate its own internal clock which it uses to sample DIN as near as possible to the center of the subsequent D4-D0 bit periods. After bit D0 is sampled, the five sampled values are sent to the Q4-Q0 outputs. At the end of the D0 bit period, if DIN is not already high, it must be set high to signal the end of the transaction and to prepare for the next one.

www.ti.com

TYPICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$ (unless otherwise noted)

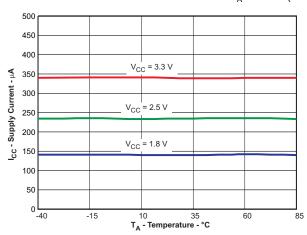
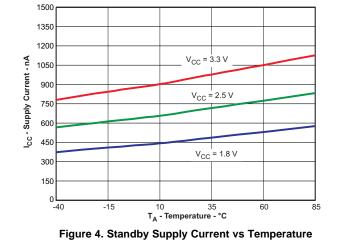



Figure 3. Active Current vs Temperature

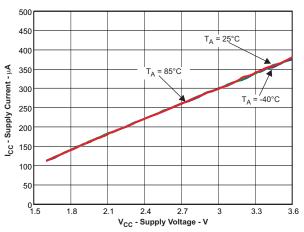


Figure 5. Active Supply Current vs Supply Voltage

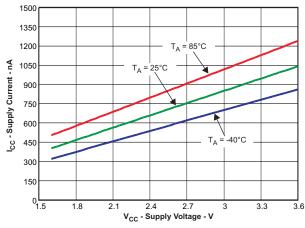


Figure 6. Standby Supply Current vs Supply Voltage

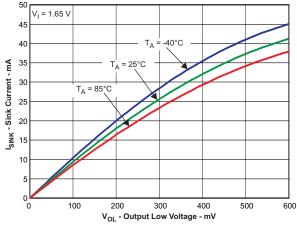


Figure 7. I/O Sink Current vs Output Low Voltage VCC = 1.65V

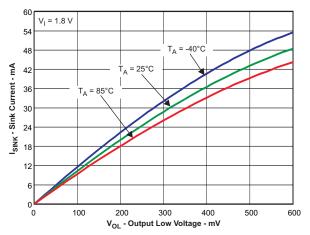


Figure 8. I/O Sink Current vs Output Low Voltage VCC = 1.8 V

SCPS228 – MARCH 2011 www.ti.com

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C (unless otherwise noted)

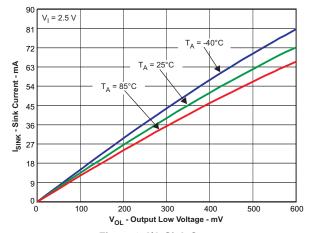


Figure 9. I/O Sink Current vs Output Low Voltage VCC = 2.5V

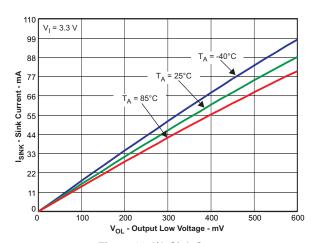


Figure 10. I/O Sink Current vs Output Low Voltage VCC = 3.3V

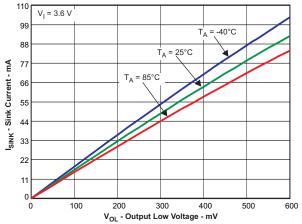


Figure 11. I/O Sink Current vs Output Low Voltage VCC =3.6V

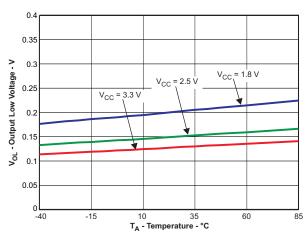


Figure 12. I/O Low Voltage vs Temperature VCC = 3.3V at 20 mA

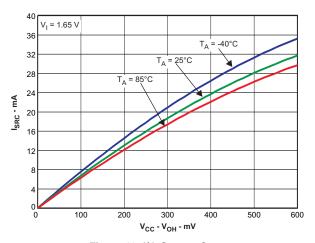


Figure 13. I/O Source Current vs Output High Voltage VCC = 1.65V

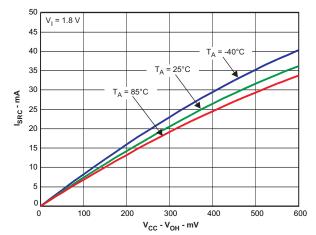


Figure 14. I/O Source Current vs Output High Voltage VCC = 1.8V

V_I = 3.6 V

100

72

64

56

40

24

16

www.ti.com

TYPICAL CHARACTERISTICS (continued)

$T_A = 25$ °C (unless otherwise noted)

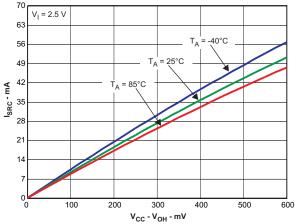
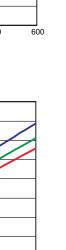



Figure 15. I/O Source Current vs Output High Voltage VCC = 2.5V

T_A = 85°C

200

600

-40°C

Figure 17. I/O Source Current vs Output High Voltage VCC = 3.6V

300

V_{CC} - V_{OH} - mV

400

500

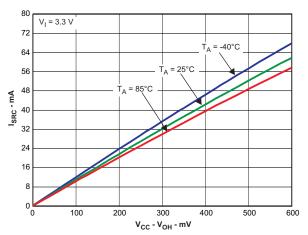


Figure 16. I/O Source Current vs Output High Voltage VCC = 3.3V

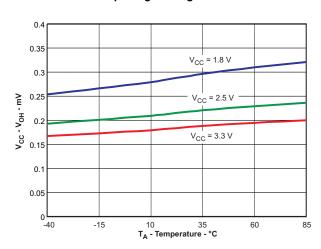
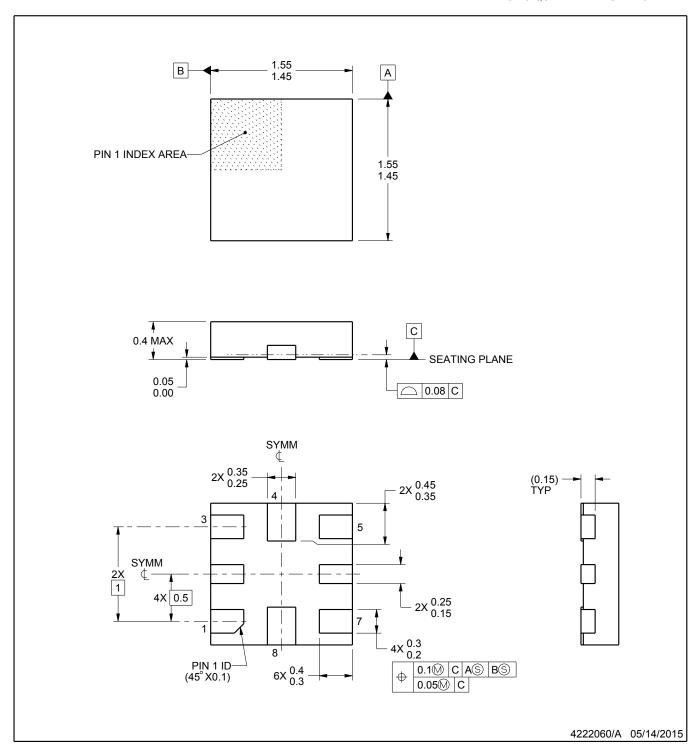
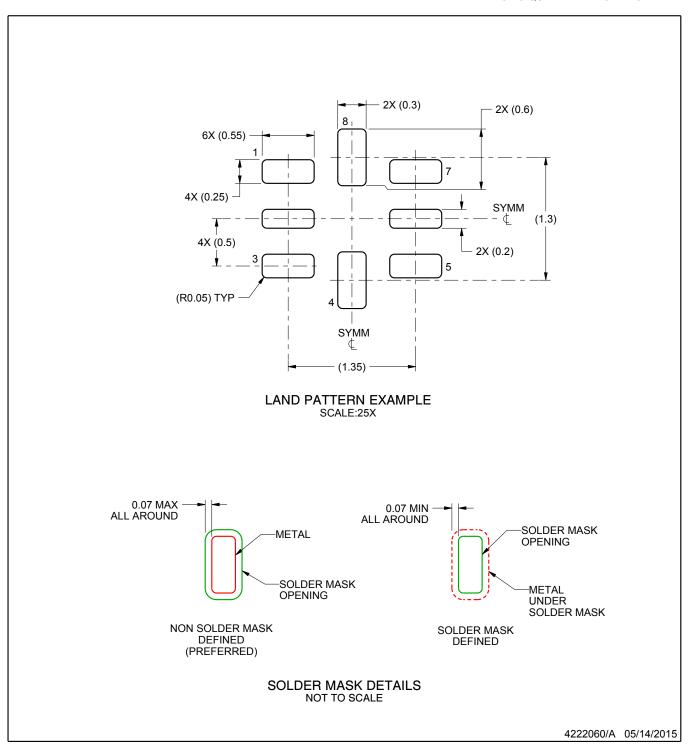



Figure 18. I/O High Voltage vs Temperature VCC = 3.3V at 20 mA

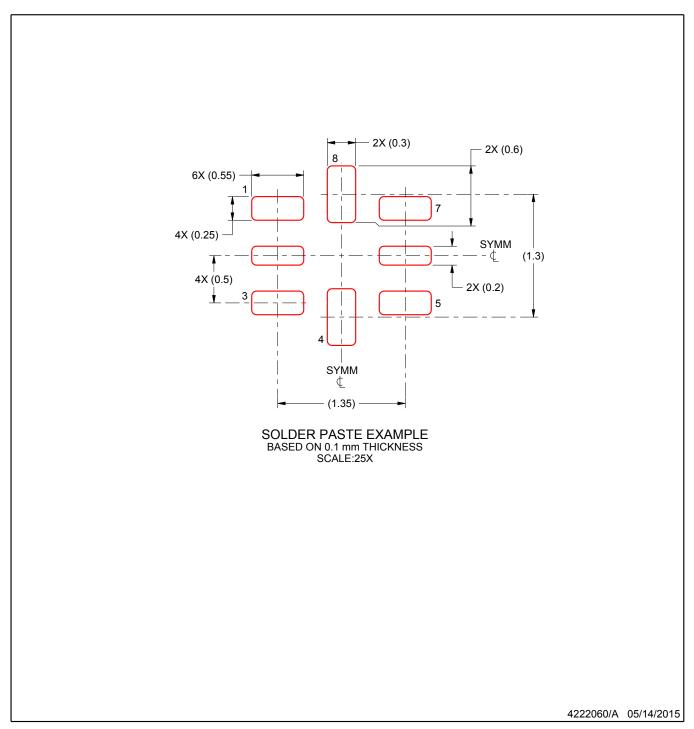
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TCA5405RUGR	ACTIVE	X2QFN	RUG	8	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	6Y	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

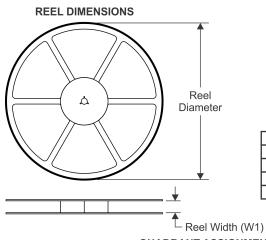
OBSOLETE: TI has discontinued the production of the device.

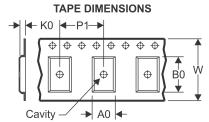
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

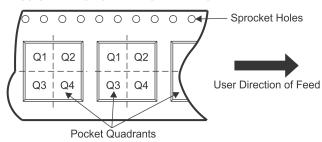
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

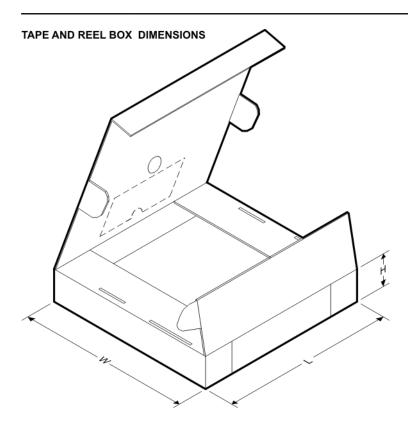
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ſ	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TCA5405RUGR	X2QFN	RUG	8	3000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

*All dimensions are nominal

ĺ	Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	TCA5405RUGR	X2QFN	RUG	8	3000	202.0	201.0	28.0	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated