

APPROVAL SHEET

WR10, WR12, WR08, WR06, WR04

±1%, ±5%, Jumper

Thick Film General Purpose Chip Resistors

Size 1210, 1206, 0805, 0603, 0402

RoHS 2 Compliant with exemption 7C-I

Halogen free

*Contents in this sheet are subject to change without prior notice.

FEATURES

- 1. High reliability and stability
- 2. Reduced size of final equipment
- 3. Lower assembly costs
- 4. Higher component and equipment reliability
- 5. RoHS 2 compliant with exemption 7C-I and Halogen free products
- Flammability against UL94-V0

APPLICATIONS

- Consumer electrical equipment
- EDP, Computer application
- Telecom application

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

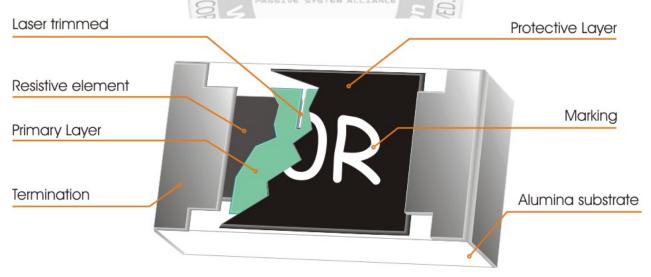


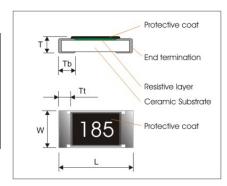
Fig 1. Construction of Chip-R

QUICK REFERENCE DATA

Item	General Specification						
Series No.	WR10	WR12	WR08	WR06	WR04		
Size code	1210(3225)	1206(3216)	0805(2012)	0805(2012) 0603(1608) 0402(10			
Pagistanas Panga		1Ω~	-10M Ω (±5% tolerar	nce),			
Resistance Range		1Ω~	-10M Ω (±1% tolerar	nce),			
Resistance Tolerance			±1%, E96/E24				
Resistance Tolerance	±5%, E24						
TCR (ppm/°C)							
10MΩ ≥R > 10Ω			≤ ± 100				
R≤10Ω			-200~+400				
Max. dissipation @ T _{amb} =70°C	1/2 W	1/4 W	1/8 W	1/10 W	1/16 W		
Max. Operation Voltage	200V 200V 150V 75V				50V		
Max. Overload Voltage	400V	400V	300V	150V	100V		
Operation temperature	-55 ~ +155°C						

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by


 $RCWV = \sqrt{Rated Power \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

For Jumper (0Ω) :

	Item	General Specification					
Series No.		WR10	WR12	WR08	WR06	WR04	
Size code		1210(3225) 1206(3216) 0805(2012) 0603(1608) 0402(1					
Desistance	Dongo	3	≤5	0mΩ for P tolerance	•		
Resistance	Range	1/1/1	(0,1 ≤3	0mΩ for F tolerance	•		
TCR (ppm/	′°C)	10/1	TCR is not applicable for Jumper product				
Max. dissip @ T _{amb} =70		1/2 W	44 W CORPO	1/8 W	1/10 W	1/16 W	
Р	Rated Current	3A	2A	1.6A	1A	1A	
tolerance	Peak Current	7.5A	5A	3.2A	3A	2A	
F	Rated Current	4A	2.9A	2A	1.8A	1A	
tolerance Peak Current		10A	5.8A	4A	3.6A	2A	
Operation temperature -55 ~ +155°C							

DIMENSIONS (unit: mm)

	WR10	WR12	WR08	WR06	WR04
L	3.10 ± 0.10	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	1.00 ± 0.05
W	2.60 ± 0.10	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
Т	0.55 ± 0.10	0.55 ± 0.10	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
Tb	0.50 ± 0.20	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.25 ± 0.10
Tt	0.50 ± 0.20	0.50 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.20 ± 0.10

CATALOGUE NUMBERS

The resistors have a catalogue number starting with

WR12	X	472_	J	Т	L
Size code	Type code	Resistance code	Tolerance code	Packaging code	Termination code
WR10: 1210 WR12: 1206 WR08: 0805 WR06: 0603 WR04: 0402	X: Jumper $\pm 5\%$. $1\Omega \sim 10 M\Omega$ $\pm 1\%$ $10\Omega \sim 1 M\Omega$ W: $\pm 1\%$ $1\Omega < R < 10\Omega$ $\pm 1\%$ $1 M\Omega < R < 10 M\Omega$	±5%,E24: 2 significant digits followed by no. of zeros and a blank 4.7Ω =4R7_ 10Ω =100_ 220Ω =221_ Remark: "_" means a blank $\pm 1\%$,E24+E96: 3 significant digits followed by no. of zeros 102Ω =1020 $37.4K\Omega$ =3742 82Ω =82R0 For Jumper (0Ω) P tol. ≤ $50m\Omega$ =0000_ F tol. ≤ $30m\Omega$ =0000 Remark: "_" means a blank	$F: \pm 1\%$ $J: \pm 5\%$ For Jumper (0Ω) $P: ≤ 50mΩ$ $F: ≤ 30mΩ$	T :7" Reeled taping Q :10" Reeled taping G :13" Reeled taping H :13" reel 50Kpcs only for 0402 B :Bulk D :7" reel 20Kpcs only for 0402 A :7" reel 15Kpcs only for 0402	L:Sn base (lead-free)

Remark:

1210, 1206, 0805, 0603:

1. 8mm width paper taping 5000pcs per 7" reel, 10kpcs per 10" reel, 20kpcs per 13" reel.

2. Bulk packaging: 5000pcs per poly-bag

0402:

- 1. 8mm width paper taping 10,000pcs per 7" reel, 70kpcs per 13" reel.
- 2. Bulk packaging: 5000pcs per poly-bag

MARKING

Size \ Nr. Of digit of code\tolerance	±5% & Jumper (0Ω)	±1%
1210 (3225)	3 digits marking	4 digits marking
1206 (3216)	3 digits marking	4 digits marking
0805 (2012)	3 digits marking	4 digits marking
0603 (1608)	3 digits marking	3 digits marking
0402 (1005)	NO MA	RKING

3 digits marking [$\pm 5\%$: 1210,1206, 0805, 0603 & Jumper (0 Ω)]

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

3 digits marking $(\pm 1\%:0603)$

Nomina	ıl resistan	nce	Description												
1.E24 s	eries	2 si	gnificant o	digits fol	lowed by	No. of ze	eros .As 0	0603 WF	RO6X ±5%)					
			Exam												
				SISTAN	_	4.7Ω	47Ω		70Ω	4K70	47K0			M70	
		3 digits marking 4R7 470 471 472 473 474 475													
2.E96 s	eries	The	1st two d	ligit code	es are refe	erring to	the COD	E on the	table, the	e 3rd co	de is the i	index of	resistand	ce value	
		Rep	eat value	s betwe	en E24 ar	nd E96 s	eries, wh	ose mar	king are l	pased or	the E96	CODE 1	table.		
			Code	Z	NY4	1.7	x上位		В	C	D	Е	ı	=	G
		-	Multiplier	10			0 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³	10		0 ⁵	10 ⁶
			Exam		11/W B					50					
			_	SISTAN	ICE	1.78Ω	17.8Ω	1	78Ω	1K78	17K8	178	3K 1	M78	
				gits mar		25Y	25X		25A	25B	25C	25		25E	
						PASSI	ve syste	EM ALLS	ANCE			1	l e		
3. Rema	ark	The	ere is no m	narking f	or the iter	ns not u	nder E24	and E96	series.		7				
E96 CC	DE table:			13	急 5				AP:						
CODE	R value	CODE	R-value	CODE	R-Value	CODE	R-value	CODE	R-value	CODE	R-value	CODE	R-value	CODE	R-value
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40/	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
80	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	215	45	287	57	383	69	511	81	681	93	909
10	124	22	165	34	221	46	294	58	392	70	523	82	698	94	931
11	127	23	169	35	226	47	301	59	402	71	536	83	715	95	953
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

4 digits marking $(\pm 1\% : 1210,1206,0805)$

Each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value. For values below $97\Omega6$ the R is used as a digit. For values of 100Ω or greater, the first 3 digits are significant, and the fourth digit indicates the number of multiple to follow.

Example

RESISTANCE	Jumper (0Ω)	4.7Ω	10Ω	12Ω	100Ω	6800Ω	47000Ω	470000Ω
3 digits marking (1210, 1206, 0805, 0603 ±5% & Jumper)	000	4R7	100	120	101	682	473	474
4 digits marking	-	4R70	10R0	12R0	1000	6801	4702	4703

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$, and E96 series for resistors with a tolerance of $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

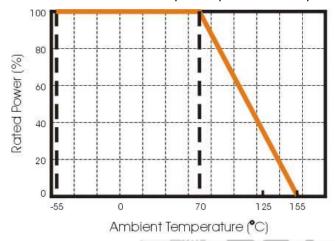


Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

Storage and Handling Conditions:

- 1. Products are recommended to be used up within two years since operation date as ensured shelf life. Check solderability in case shelf life extension is needed.
- 2. To store products with following condition:

Temperature :5 to 40°C

Humidity :20 to 70% relative humidity

- 3. Caution:
 - a. Don't store products in a corrosive environment such as sulfide, chloride gas, or acid.

It may cause oxdization of electrode, which easily be resulted in poor soldering.

- b. To store products on the shelf and avoid exposure to moisture.
- c. Don't expose products to excessive shock, vibration, direct sunlight and so on

SOLDERING CONDITION follows J-STD-020D

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

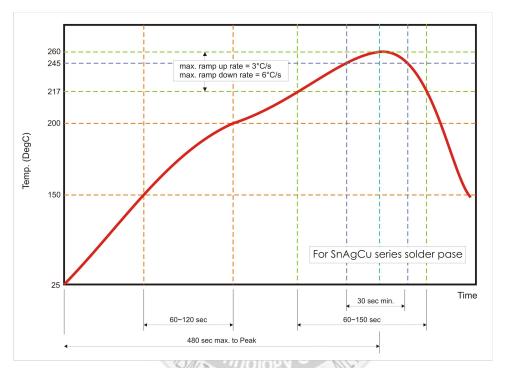


Fig 3. Recommended IR reflow soldering profile for SMT process with SnAgCu series solder paste

TESTS AND REQUIREMENTS

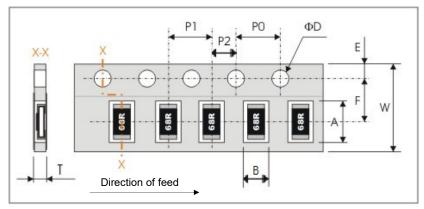
Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.

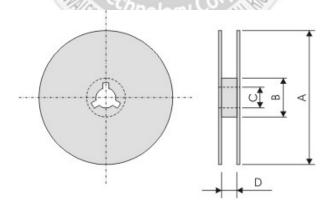
Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

TEST	DDOOEDLIDE / TEST METHOD	REQUIREMENT			
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω		
Electrical Characteristics JISC5201-1: 1998 Clause 4.8	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R) Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \text{ (ppm/°C)} t_1:20^\circ\text{C}+5^\circ\text{C}-1^\circ\text{C}; \ t_2:-10^\circ\text{C}+10^\circ\text{C} \times 10^\circ\text{C} \times 10^\circ$	Within the specified tolerance Refer to "QUICK REFERENCE DATA"	<50mΩ		
Resistance to soldering heat(R.S.H) JISC5201-1:1998 Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C ±5°C	±5%:ΔR/Rmax.±(1%+0.05Ω) ±1%:ΔR/Rmax.±(0.5%+0.05Ω) no visible damage	<50mΩ		
Solderability JISC5201-1:1998 Clause 4.17	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235°C±5°C	95% coverage min., good tinning visible damage	and no		
Temperature cycling JISC5201-1:1998 Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at +155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	$\pm 5\%$: ΔR/R max. $\pm (1\% + 0.05\Omega)$ $\pm 1\%$:ΔR/Rmax. $\pm (0.5\% + 0.05\Omega)$ No visible damage	<50mΩ		
High Temperature Exposure MIL-STD-202 method 108	1000+48/-0 hours; without load in a temperature chamber controlled 155±3°C	\pm 5%: Δ R/Rmax. \pm (2%+0.1 Ω) \pm 1%: Δ R/Rmax. \pm (1%+0.1 Ω) No visible damage	<50mΩ		



TEST	DROCEDURE / TEST METHOD	REQUIREMENT	
IESI	PROCEDURE / TEST METHOD	Resistor	0Ω
Bending strength JISC5201-1:1998 Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending once 3mm for 10sec, 5mm for WR04	$\pm 5\%$:ΔR/Rmax. $\pm (1\% + 0.05\Omega)$ $\pm 1\%$:ΔR/Rmax. $\pm (1\% + 0.05\Omega)$ No visual damaged	<50mΩ
Adhesion JISC5201-1:1998 Clause 4.32	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or rethe terminations	moval of
Short Time Overload (STOL) JISC5201-1:1998 Clause 4.13	2.5 times RCWV or max. overload voltage, for 5seconds	\pm 5%: ΔR/R max. \pm (2%+0.05Ω) \pm 1%: ΔR/R max. \pm (1%+0.05Ω) No visible damage	<50mΩ
Load life in Humidity JISC5201-1:1998 Clause 4.24	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	\pm 5%: ΔR/R max. \pm (2%+0.1 Ω) \pm 1%: ΔR/R max. \pm (1%+0.1 Ω) No visible damage	<50mΩ
Load life (endurance) JISC5201-1:1998 Clause 4.25	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off	\pm 5%: ΔR/R max. \pm (3%+0.1Ω) \pm 1%: ΔR/R max. \pm (1%+0.1Ω) No visible damage	<50mΩ
Insulation Resistance JISC5201-1:1998 Clause 4.6	Apply the maximum overload voltage (DC) for 1minute	R≥10GΩ	
Dielectric Withstand Voltage JISC5201-1:1998 Clause 4.7	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover	

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	Α	В	W	F	Е
WR10	3.60±0.20	3.00±0.20			
WR12	3.60±0.20	2.00±0.20			
WR08	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10
WR06	1.90±0.20	1.10±0.20			
WR04	1.20±0.10	0.70±0.10	自然分		

Series No.	P1	P0	P2	ΦD	T
WR10/12/08	4.00+0.40	U N			0.80±0.1
WR06	4.00±0.10	4.00±0.10	2.00±0.10	Φ1.50 ^{+0.1} _{-0.0}	0.70±0.05
WR04	2.00±0.10		ا ق	100	0.50±0.05

Reel dimensions

Symbol	A	В	С	D
7" reel	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5
10" reel	Φ254.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5
13" reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

```
WR04X1001FTL WR04X1002FTL WR04X1003FTL WR04X1004FTL WR04X10R0FTL WR04X1301FTL
WR04X4700FTL WR04X4701FTL WR06X1002FTL WR06X1003FTL WR06X4702FTL WR08X1003FTL
WR06X1581FTL WR06X6191FTL WR12X000 PTL WR12W1R00FTL WR04X000PTL WR04X1872FTL
WR04X7320FTL WR06X3920FTL WR04X823 JTL WR04X2742FTL WR04X6193FTL WR12X3303FTL
WR06X33R2FTL WR04X1401FTL WR04X3573FTL WR04X4320FTL WR04X2210FTL WR06X7322FTL
WR04X2322FTL WR04X4422FTL WR06X6810FTL WR06X2372FTL WR04X1783FTL WR04X3923FTL
WR06X1301FTL WR06X2260FTL WR04X3303FTL WR04X7872FTL WR06X7682FTL WR04X4870FTL
WR04X3742FTL WR06X56R2FTL WR04X2743FTL WR04X333 JTL WR04X3001FTL WR06X4700FTL WR25X910
JTL WR12X472JTL WR06X332JTL WR20X101 JTL WR04X2203FTL WR04X2490FTL WR06X3013FTL
WR04X2202FTL WR06X1802FTL WR10X103 JTL WR10X182 JTL WR10X151 JTL WR10X2R0 JTL WR10X201
JTL WR10X1R2 JTL WR10X100 JTL WR10X332 JTL WR10X820 JTL WR10X1503FTL WR10X242 JTL
WR06X152 JTL WR04X60R4FTL WR04X752 JTL WR06X22R0FTL WR08X8202FTL WR06X1210FTL
WR04X3013FTL WR12X204 JTL WR06X824 JTL WR04X154 JTL WR04X5621FTL WR06X17R8FTL
WR06X4870FTL WR06X2201FTL WR08X5101FTL WR04X51R0FTL WR04X4703FTL WR04X3010FTL
WR04X121 JTL WR06X5623FTL WR12X300 JTL WR12X1000FTL WR06X3R0 JTL WR04X151 JTL
WR06X27R4FTL WR06X80R6FTL WR04X3321FTL WR08X1100FTL WR04X61R9FTL WR06X1211FTL
WR04X4R7 JTL WR12X20R0FTL
```