BMA400Digital, triaxial acceleration sensor **Bosch Sensortec** #### **Preliminary Data Sheet BMA400** Part number(s) 0 273 141 xyz Document revision 0.1 Release date 03 November 2017 Document number BST-BMA400-DS000-00 Notes Specifications are preliminary and subject to change without notice. Product photos and pictures are for illustration purposes only and may differ from the real product's appearance. Preliminary Data Sheet - Confidential and under NDA Page 2 / Confidential ### **BMA400** 12 bit, digital, triaxial acceleration sensor with smart on-chip motion and position-triggered interrupt features. ### **Key features** • Small package size LGA package (12 pins), footprint 2mm x 2mm, height 0.95 mm Ultra-low power Low current consumption of data acquisition without compromising on performance (< 14 µA with highest performance) Programmable functionality Acceleration ranges ±2g/±4g/±8g/±16g Low-pass filter bandwidths = 0.48*ODR up to a max. output data read out of 800Hz On-chip FIFO Integrated FIFO on sensor with 1 kb On-chip interrupt features Auto-low power/Auto wakeup Activity/In-activit Step Counter (4µA) Activity Recognition (Walking, Running, Standing still) Orientation detection Tap/double tap Digital interface SPI (4-wire, 3-wire), I²C, 2 interrupt pins V_{DDIO} voltage range: 1.2V to 3.6V RoHS compliant, halogen-free #### **Typical applications** - Step Counting with ultra-low current consumption for extensive battery lifetime - Advanced system power management for mobile applications and (smart) watches - Fitness applications / Activity Tracking - Tap / double tap sensing - Drop detection for warranty logging - Window/door measurements for climate control and alarm systems - IoT applications powered by coin cell driven batteries, requiring <1uA and auto-wakeup functionality BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 3 / Confidential ### **Table of contents** ### **Contents** | 1. | SPECIFICATION | 8 | |----|--|-----------| | 2. | ABSOLUTE MAXIMUM RATINGS | 10 | | 3. | QUICK START GUIDE | 11 | | | Note about using the BMA400: | | | | First application setup examples algorithms: | | | 4. | FUNCTIONAL DESCRIPTION | | | | 4.1. SUPPLY VOLTAGE AND POWER MANAGEMENT | 1.5 | | | | | | 4 | 4.2. POWER MODES – PERFORMANCE MODES | | | | Auto low-power mode | 2 | | | | 2 | | 4 | 4.3. SENSOR DATA | 26 | | | Filter Configuration | 25
کا | | X | G-range selection | 20
20 | | | Data Ready Interrupt | 29 | | | Temperature Sensor | 29 | | | Sensor Time | 30 | | Δ | 4.4. FIFO | 31 | | , | FIFO description | 3.1 | | | FIFO input data | 31 | | | FIFO read out | 32 | | | FIFO overflow behavior | 32 | | | Frames | 33 | | | Under-read | 36 | | | Partial frame read | | | | Over-readReading nearly-empty FIFO | اک
برد | | | FIFO flushing | ع
ع | | | FIFO watermark interrupt | | | | FIFO full interrupt | 39 | | _ | 4.5. GENERAL INTERRUPT PIN CONFIGURATION | | | 7 | Interrupt Pin Mapping | 40 | | | Interrupt Pin MappingInterrupt latching | 40 | | | Interrupt behavior during power mode switching | | | | Electrical Interrupt Pin Behavior | | | 4 | 4.6. Interrupt Features | 43 | Page 4 / Confidential | li | nterrupt pin mapping, interrupt status | 43 | |------|---|----| | (| Generic Interrupt 1 and 2 | 44 | | | Step Detector / Step Counter | | | A | Activity changed interrupt | 48 | | | Tap Sensing Interrupt | | | | nterrupt engine overrun | | | C | Orientation change interrupt | 51 | | 4.7 | | | | 4.8 | . Soft-Reset | 55 | | 5. F | REGISTER DESCRIPTION | 56 | | 5.1. | . Register Map | 56 | | F | Register (0x00) CHIPID | 59 | | F | Register (0x00) CHIPIDRegister (0x02) ERR_REG | 60 | | F | Register (0x03) STATUS | 60 | | F | Register (0x04) ACC, X, LSB | 61 | | F | Register (0x05) ACC_X_MSB | 62 | | F | Register (0x06) ACC Y LSB | 62 | | F | Register (0x07) ACC_Y_MSB | 63 | | F | Register (0x08) ACC_Z_LSB | 63 | | | Register (0x09) ACC_Z_MSB | | | | Register (0x0A) SENSOR_TIME0 | | | F | Register (0x0B) SENSOR_TIME1 | 65 | | F | Register (0x0C) SENSOR_TIME2 | 65 | | F | Register (0x0D) EVENT | 66 | | F | Register (0x0E) INT_STAT0 | 66 | | F | Register (0x0F) INT_STAT1 | 67 | | F | Register (0x10) INT_STAT2 | 68 | | F | Register (0x11) TEMP_DATA | 68 | | F | Register (0x12) FIFO_LENGTH0 | 69 | | F | Register (0x13) FIFO_LENGTH1 | 69 | | F | Register (0x14) FIFO_DATA | 70 | | F | Register (0x14) FIFO_DATA
Register (0x15) STEP_CNT_0 | 70 | | F | Register (0x16) STEP_CNT_1Register (0x17) STEP_CNT_2 | 71 | | F | Register (0x17) STEP_CNT_2 | 71 | | F | Register (0x18) STEP STAT | 72 | | F | Register (0x19) ACC CONFIG0 | 72 | | F | Register (0x1A) ACC_CONFIG1 | 73 | | F | Register (0x1A) ACC_CONFIG1Register (0x1B) ACC_CONFIG2Register (0x1F) INT_CONFIG0 | 74 | | F | Register (0x1F) INT_CONFIG0 | 74 | | F | Register (0x20) INT_CONFIG1Register (0x21) INT1_MAP | 75 | | F | Register (0x21) INT1_MAP | 75 | | F | Register (0x22) INT2_MAP | 76 | | | Register (0x23) INT12_MAP | | | F | Register (0x24) INT12_IO_CTRL | 78 | Page 5 / Confidential | Register (0x26) FIFO_CONFIG0 | 79 | |----------------------------------|-----| | Register (0x27) FIFO_CONFIG1 | 80 | | Register (0x28) FIFO_CONFIG2 | | | Register (0x29) FIFO_PWR_CONFIG | 81 | | Register (0x2A) AUTOLOWPOW_0 | | | Register (0x2B) AUTOLOWPOW_1 | 82 | | Register (0x2C) AUTOWAKEUP_0 | | | Register (0x2D) AUTOWAKEUP_1 | 83 | | Register (0x2F) WKUP_INT_CONFIG0 | 84 | | Register (0x30) WKUP_INT_CONFIG1 | 85 | | Register (0x31) WKUP_INT_CONFIG2 | | | Register (0x32) WKUP_INT_CONFIG3 | | | Register (0x33) WKUP_INT_CONFIG4 | 86 | | Register (0x35) ORIENTCH_CONFIG0 | 87 | | Register (0x36) ORIENTCH_CONFIG1 | 88 | | Register (0x37) ORIENTCH_CONFIG2 | | | Register (0x38) ORIENTCH_CONFIG3 | 89 | | Register (0x39) ORIENTCH_CONFIG4 | 89 | | Register (0x3A) ORIENTCH_CONFIG5 | 90 | | Register (0x3B) ORIENTCH_CONFIG6 | 90 | | Register (0x3C) ORIENTCH_CONFIG7 | | | Register (0x3D) ORIENTCH_CONFIG8 | 91 | | Register (0x3E) ORIENTCH_CONFIG9 | 92 | | Register (0x3F) GEN1INT_CONFIG0 | 92 | | Register (0x40) GEN1INT_CONFIG1 | 93 | | Register (0x41) GEN1INT_CONFIG2 | 94 | | Register (0x42) GEN1INT_CONFIG3 | | | Register (0x43) GEN1INT_CONFIG31 | 95 | | Register (0x44) GEN1INT_CONFIG4 | 95 | | Register (0x45) GEN1INT_CONFIG5 | 96 | | Register (0x46) GEN1INT_CONFIG6 | | | Register (0x47) GEN1INT_CONFIG7 | | | Register (0x48) GEN1INT_CONFIG8 | 97 | | Register (0x49) GEN1INT_CONFIG9 | 98 | | Register (0x4A) GEN2INT_CONFIG0 | 98 | | Register (0x4B) GEN2INT_CONFIG1 | 99 | | Register (0x4C) GEN2INT_CONFIG2 | 100 | | Register (0x4D) GEN2INT_CONFIG3 | 100 | | Register (0x4E) GEN2INT_CONFIG31 | 101 | | Register (0x4F) GEN2INT_CONFIG4 | | | Register (0x50) GEN2INT_CONFIG5 | 102 | | Register (0x51) GEN2INT_CONFIG6 | | | Register (0x52) GEN2INT_CONFIG7 | | | Register (0x53) GEN2INT_CONFIG8 | | | Register (0x54) GEN2INT CONFIG9 | 104 | Page 6 / Confidential | Re | gister (0x55) ACTCH CONFIG0 | . 104 | |-------------|--|-------| | | gister (0x56) ACTCH_CONFIG1 | | | | | | | Re | gister (0x57) TAP_CONFIGgister (0x58) TAP_CONFIG1 | . 106 | | Re | gister (0x59) STEP_COUNTER_CONFIG0 | . 108 | | Re | gister (0x5A) STEP_COUNTER_CONFIG1 | . 108 | | | gister (0x5B) STEP_COUNTER_CONFIG2 | | | | gister (0x5C) STEP_COUNTER_CONFIG3 | | | | gister (0x5D) STEP_COUNTER_CONFIG4 | | | | gister (0x5E) STEP_COUNTER_CONFIG5 | | | | gister (0x5F) STEP_COUNTER_CONFIG6 | | | | gister (0x60) STEP_COUNTER_CONFIG7 | | | | gister (0x61) STEP_COUNTER_CONFIG8 | | | Re | gister (0x62) STEP_COUNTER_CONFIG9 | . 112 | | Re | gister (0x63) STEP_COUNTER_CONFIG10 | . 113 | | | gister (0x64) STEP_COUNTER_CONFIG11 | | | Re | gister (0x65) STEP_COUNTER_CONFIG12 | . 114 | | | gister (0x66) STEP_COUNTER_CONFIG13 | | | Re | gister (0x67) STEP_COUNTER_CONFIG14 | . 115 | | Re | gister (0x68) STEP_COUNTER_CONFIG15 | . 115 | | Re | gister (0x69) STEP_COUNTER_CONFIG16 | . 116 | | Re | gister (0x6A) STEP_COUNTER_CONFIG17gister (0x6B) STEP_COUNTER_CONFIG18 | . IIC | | Re | gister (0x6C) STEP_COUNTER_CONFIG18 | 117 | | Do | gister (0x6C) STEP_COUNTER_CONFIG19 | 110 | | Po | gister (0x0D) STEP_COUNTER_CONFIG20 | 110 | | Re | gister (0x6E) STEP_COUNTER_CONFIG21gister (0x6F) STEP_COUNTER_CONFIG22 | 110 | | Re | gister (0x70) STEP_COUNTER_CONFIG23 | 110 | | Re | gister (0x70) STEP_COUNTER_CONFIG24 | 120 | | Re | gister (0x7C) IF_CONF | 120 | | Re | gister (0x7D) SELF_TEST | 121 | | Re | gister (0x7E) CMD | 122 | | | GITAL INTERFACES | 400 | | DIC | #ITAL INTERFACES | | | 3.1. | INTERFACE | .123 | | 6.2. | INTERFACE I2C/SPI PROTOCOL SELECTION | .124 | | 6.3. | SPI INTERFACE AND PROTOCOL | .124 | | 6.4. | PRIMARY I2C INTERFACE | .129 | | - | read access: | | | PII | -OUT AND CONNECTION DIAGRAMS | .133 | | 7.1. | PIN-OUT | .133 | | 7.2. | CONNECTION DIAGRAMS | .134 | | | CONNECTION DIAGRAMS | | | | | | | | | | 6. 7. Page 7 / Confidential | 8. PA | CKAGE | 136 | | | | |--|---------------------------------|-----|--|--|--| | 8.1. | PACKAGE OUTLINE DIMENSIONS | 136 | | | | | 8.2. | SENSING AXIS ORIENTATION | 137 | | | | | 8.3. | LANDING PATTERN RECOMMENDATION | 139 | | | | | 8.4. | Marking | 140 | | | | | 8.5. | SOLDERING GUIDELINES | 141 | | | | | 8.6. | HANDLING INSTRUCTIONS | | | | | | 8.7. ENVIRONMENTAL SAFETYHalogen content | | 143 | | | | | | GAL DISCLAIMER | | | | | | 9.1. EN | .1. ENGINEERING SAMPLES144 | | | | | | 9.2. PR | ODUCT USE | 144 | | | | | | PLICATION EXAMPLES AND HINTS | | | | | | 10. DO | CUMENT HISTORY AND MODIFICATION | 145 | | | | Page 8 / Confidential ### 1. Specification Unless stated otherwise, the given values are over lifetime, operating temperature and voltage ranges. Minimum/maximum values are $\pm 3\sigma$. #### Parameter Specification | Parameter | Symbol | Condition | Min |
Тур | Max | | |---|-----------------|--|-----------------------|-----|-----------------------|----| | Acceleration | g FS2g | | | ±2 | | g | | Range | g FS4g | 70, | | ±4 | | g | | | g FS8g | 10, | | ±8 | | g | | | g FS16g | | | ±16 | | g | | Supply Voltage
Internal
Domains | V_{DD} | 11 | 1.72 | 1.8 | 3.6 | V | | Supply Voltage I/O Domain | V_{DDIO} | | 1.2 | 1.8 | 3.6 | V | | Voltage Input
Low Level | V _{IL} | SPI & I ² C | | (0) | 0.3V _{DDIO} | | | Voltage Input
High Level | V _{IH} | SPI & I ² C | 0.7V _{DDIO} | | | | | Voltage Output
Low Level | V _{OL} | V_{DDIO} =1.8V, I_{OL} =3mA, SPI | 6 | | 0.2V _{DDIO} | | | | 50 | V_{DDIO} =1.2V, I_{OL} =3mA, SPI | | 16. | 0.23V _{DDIO} | - | | Voltage Output
High Level | V_{OH} | V_{DDIO} =1.8V, I_{OH} =3mA, SPI | 0.8V _{DDIO} | CKI | | 0 | | | | V_{DDIO} =1.2V, I_{OH} =3mA, SPI | 0.62V _{DDIO} | | | | | Total Supply
Current in
Normal mode | IDD | Nominal VDD and
VDDIO, 25°C,
OSR=3 | 200 | 14 | 900 | μΑ | | Total Supply
Current in
Sleep Mode | IDDsum | Nominal VDD and VDDIO, 25°C | | 200 | | nA | | Total Supply
Current in
Low-power
Mode | IDDlp1 | Nominal VDD and
VDDIO, 25°C
25 Hz ODR
OSR=0 | 100 | 800 | | nA | | Wake-Up Time | tw_up | From sleep to normal mode | (10) | | 2/ODR | | | Power-Up Time | ts_up | Starting the device to sleep mode | | | 1 | ms | | Operating
Temperature | TA | O | -40 | | +85 | °C | BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 9 / Confidential | OUTPUT SIGNAL | | | | | | | |---------------------------------------|---------------------|--|-------------|-----------|----------|--------| | Parameter | Symbol | Condition | Min | Тур | Max | Units | | Sensitivity | S _{2g} | g _{FS2g} , T _A =25°C | | 1024 | | LSB/g | | | S _{4g} | g_{FS4g} , $T_A=25$ °C | | 512 | | LSB/g | | | S _{8g} | g_{FS8g} , $T_A=25^{\circ}C$ | | 256 | | LSB/g | | | S _{16g} | g_{FS16g} , $T_A=25$ °C | | 128 | | LSB/g | | Sensitivity
Temperature
Drift | TCS | 7110 | | 0.02 | | %/K | | Zero-g Offset | Off | Nominal V_{DD} and VDD_{IO} , 25°C, g_{FS4g} Over life-time | | 80 | | mg | | Zero-g Offset
Temperature
Drift | тсо | Cillo | | | | mg/K | | Output Data
Rate | ODR _{NORM} | Normal mode | 12.5 |) | 800 | Hz | | Bandwidth | BWnorm | 3dB cutoff
frequency of the
accelerometer is
selectable | 0.24*ODR | <i>\\</i> | 0.48*ODR | Hz | | Output Data
Rate | ODR_{LPM} | Low-power mode | | 25 | | Hz | | Nonlinearity | NL | Nominal V _{DD} and VDD _{IO} , 25°C, g _{FS4g} | | 0.5 | | %FS | | Output Noise
Density | n _{rms} | Typical V _{DD} and VDD _{IO} , normal mode, OSR=3 (high performance) 25°C, 4g | 000 | 220 | 9 nu | µg/√Hz | | | 0 | MECHANICAL CHAP | RACTERISTIC | s | | | | Parameter | Symbol | Condition | Min | Тур | Max | Units | | Cross Axis
Sensitivity | S | relative contribution
between any two of
the three axes | | 2 | | % | | Alignment Error E _A re | | relative to package outline | 10, | 0.5 | | 0 | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 10 / Confidential ### 2. Absolute maximum ratings #### **Absolute maximum ratings** | Parameter | Condition | Min | Max | Units | |-----------------------------|------------------------------|------|---------------------|-------| | Voltage at Supply Pin | V _{DD} Pin | -0.3 | 3.6 | V | | | V _{DDIO} Pin | -0.3 | 3.6 | V | | Voltage at any Logic Pin | Non-Supply Pin | -0.3 | V_{DDIO} +0.3, <4 | V | | Passive Storage Temp. Range | ≤ 65% rel. H. | -50 | +150 | °C | | Mechanical Shock | Duration ≤ 200µs | | 10,000 | g | | | Duration ≤ 1.0ms | | 2,000 | g | | 200 | Free fall onto hard surfaces | | 1.8 | m | | ESD | HBM, at any Pin | | 2 | kV | | | CDM | | 500 | V | | ×.0- | MM | 70 | 200 | V | #### Note: Stress above these limits may cause damage to the device. Exceeding the specified electrical limits may affect the device reliability or cause malfunction. Page 11 / Confidential ### 3. Quick Start Guide The purpose of this chapter is to help developers who want to start working with the BMA400 by giving you some very basic hands-on application examples to get started. #### Note about using the BMA400: - The communication between application processor AP and BMA400 will happen either over I2C or SPI interface. For more information about the interfaces, read the related chapter 6. Digital Interfaces. - For information about connecting the BMA400 to the host (AP), read the related chapter 7 where you find Pin-out and Connection Diagrams. ### First application setup examples algorithms: After correct power up by setting the correct voltage to the power pins, the BMA400 enters automatically into the Power On Reset (POR) sequence, also called boot sequence. After having completed boot, the BMA400 enters sleep mode where it consumes 200nA. No data conversions happen in this phase, but register read-out and write is possible. Communication can start in I2C or SPI mode. The BMA400 automatically detects which format is used. When SPI format is used, the BMA400 switches to SPI4 mode and remains in this mode until reset. The switching to SPI requires to send the very first SPI packet twice: the first packet will be ignored by the BMA400. If SPI3 communication is desired, a write to register IF_CONF (write_reg(IF_CONF, 0x01)) switches the communication protocol to SPI3. In order to properly make use of the BMA400, certain steps from host processor side are needed. The most typical operations will be explained in the following application examples in form of flow-diagrams. Page 12 / Confidential 1. Example 1: Testing communication with the BMA400, switch to SPI communication, state data conversion, enable data ready interrupt and map it to INT1 pin -reading chip id (checking correct communication) using I2C or SPI Page 13 / Confidential -switching from sleep to normal mode, then SPI3 mode, then enable data ready interrupt and map to pin int1 Page 14 / Confidential -checking communication via chipid, check power mode, read acceleration data if not in sleep mode Page 15 / Confidential #### 1. Example 3: Testing interrupt engine of BMA400 (example: inactivity interrupt) a. -performing reconfiguration sequence (interrupt feature: significant motion) all interrupts only available in normal mode except wake-up, data ready map gen1 interrupt to int1 pin interrupts are non-latched: if interrupt reason vanishes, int1 is deasserted Int1 pin interrupt = HIGH active Enable X,Y,Z axis, data source = acc_filt2 (fixed 100Hz), update reference every time, hysteresis= 48mg Configure gen1 interrupt to inactivity (criterion=0), AND combination of all axes set threshold LSBs set min. duration LSBs to 15 ODR ticks Enable gen1 interrupt in normal mode, mapped to int1 pin and configured as inactivity interrupt with 15ODR ticks minimum duration BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 16 / Confidential #### **Further steps:** The BMA400 has many more capabilities that are described in this document and include FIFO, power saving modes, synchronization capabilities with host processor, data synchronization, many interrupts generation and more features like step counter, etc. BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 17 / Confidential ### 4. Functional Description ### **Block Diagram** Page 18 / Confidential #### 4.1. Supply Voltage and Power Management BMA400 has two distinct power supply pins: - VDD is the main power supply. - VDDIO is a separate power supply pin used for supplying power for the digital communication interface. There are no limitations with respect to the voltage level applied to the VDD and VDDIO pins, as long as it lies within the respective operating range. Furthermore, the device can be completely switched off (VDD=0V) while keeping the VDDIO supply within operating range or vice versa. However if the VDDIO supply is switched off, all interface pins (CSB, SDX, SCX) must be kept close to GNDIO potential. No constraints exist for the minimum slew-rate of the voltage applied to the VDD and VDDIO pins. Page 19 / Confidential #### 4.2. Power Modes - performance modes The power mode and all major settings affecting performance, current consumption, noise and output data rate are controlled in registers ACC CONFIGO, ACC CONFIG1 and ACC CONFIG2. The BMA400 knows 3 power modes: sleep mode, low-power mode and normal mode. In **sleep mode**, current consumption is below 300nA, and data conversions are stopped as well as sensortime functionality. In **low power mode**, data conversion runs with a fixed rate of 25Hz, and performance can be controlled via ACC_CONFIG0.osr_lp setting. Current consumption ranges between 800 nA and 1100 nA depending on performance setting. The low power mode should be mainly used in combination with activity detection as self wake-up mode. In this use case, 800 nA are sufficient. In **normal mode**, output data rates between 800Hz and 12.5Hz can be configured using the registers ACC_CONFIG1.acc_odr and ACC_CONFIG1.osr. The noise density performance of the BMA400 is mainly determined by ACC_CONFIG1.osr. The RMS noise and the resulting current consumption of the device is influenced by ACC_CONFIG1.acc_odr and ACC_CONFIG1.osr. Page 20 / Confidential In all 3 power modes both register contents and FIFO contents are retained. FIFO readout can be done in normal mode only. The FIFO is written only in normal
mode. | ACC_CONFIG0. power_mode<1:0> | Description | Details | |------------------------------|---|--| | b00
b11 | Sleep mode
(default state after power-up and
after reset) | I(VDD)< 300nA typ No sensortime, no FIFO read, no data conversions. Register and FIFO content retained, registers readable and writeable | | b01 Low-power mode | | I(VDD)< 1.1uA typ Data conversion at 25Hz fixed, noise performance and current consumption tunable by ACC_CONFIG0.osr_lp setting wake-up interrupt to switch into normal mode No FIFO read/write | | b10 | Normal mode | I(VDD)< 14 uA typ Data conversion configurable between 800Hz and 12.5Hz, noise performance and current consumption tunable by ACC_CONFIG1.osr FIFO read and write All interrupts available Auto-low-power function/interrupt using generic interrupt 1 to switch automatically into low-power mode | Page 21 / Confidential #### Current consumption (uA) in normal mode and low-power mode | | ACC_CONFIG1.osr or ACC_CONFIG0.osr_lp | | | | |---|---------------------------------------|-----|----|-----| | | 11 | 10 | 01 | 00 | | Normal mode ACC_CONFIG0. power_mode<1:0> = b10 | 14 | 8 | 5 | 3 | | Low-power mode ACC_CONFIG0. power_mode<1:0> = b01 | 1.2 | 1.1 | 1 | 0.9 | Noise performace (rms in mg) in normal mode and low-power mode in 4g range (x and y axes are shown, Z-axis is 1.27 x higher) | | (3) | | ACC_CONFIG1.osr or
ACC_CONFIG0.osr_lp | | | | | |---|----------|------|--|------|-------|--|--| | (8) | ODR [Hz] | 11 | 10 | 01 | 00 | | | | 601 | 800 | 4.41 | 6.23 | 8.81 | 12.48 | | | | | 400 | 3.12 | 4.41 | 6.23 | 8.81 | | | | Normal mode | 200 | 2.21 | 3.12 | 4.41 | 6.23 | | | | ACC_CONFIGO. power mode<1:0> = b10 | 100 | 1.56 | 2.21 | 3.12 | 4.41 | | | | | 50 | 1.09 | 1.56 | 2.21 | 3.12 | | | | | 25 | 0.78 | 1.09 | 1.56 | 2.21 | | | | 6/0 | 12.5 | 0.55 | 0.78 | 1.09 | 1.56 | | | | Low-power mode
ACC_CONFIGO.
power mode<1:0> = b01 | 25 | 4.41 | 6.23 | 8.81 | 12.48 | | | Page 22 / Confidential #### Wake-up Interrupt / Auto wake-up The auto-wakeup function is part of the power management concept of the BMA400. If the wakeup function (only available in low-power mode) changes the power mode to "normal", the host processor can be notified by an interrupt. This is called "wakeup interrupt", thus, the two topics "auto wakeup" and "wakeup interrupt" are handled together in this chapter. The transition from Low-power to Normal mode is named "wake-up". Switching into Normal mode from Low-power mode can be explicitly triggered by a serial interface command. This can also be done automatically by using the auto wakeup function. Auto wakeup can be either timer triggered or activity triggered. Each selected condition is independent and can be used as wake-up condition. In case more than one condition is selected, the first occurred condition sets the BMA400 into normal mode. The three possible triggers for wake-up from low-power mode are: - by serial command (already described in a previous chapter) - by timeout - by activity #### Wakeup by timeout The source condition wkup_timeout and the timeout counter threshold value AUTOWAKEUP_1.wakeup_timeout_thres is configured in register AUTOWAKEUP(0/1). The wakeup_timeout_thres has 12bits for configuration of counter duration, with a resolution of 2.5ms/LSB. The maximum timeout for wake-up is 10.24s (4096*2.5ms). Page 23 / Confidential #### Wake-up interrupt on activity If in low-power mode, BMA400 will wake up when the conditions as defined by the configuration registers are fulfilled. The wake-up can be used for the wake-up of the external MCU using interrupt mapping or/and for changing the BMA400 power mode into normal mode to evaluate the acceleration data more accurately for complex/advanced interrupts or/and store the data in the FIFO for advanced processing on the external MCU. The Low-power wake-up function evaluates acceleration data and is set as soon as the value of the sampled data exceeds the preconfigured acceleration threshold. The comparison of the current acceleration value with a reference is configurable between relative reference (last sampled value stored in the register) and absolute reference (the reference values are set once and not changing after each acceleration conversion). The delay between two data conversions is 40ms (25Hz conversion ODR in Low-power). The Low-power wake- up function is activated by setting AUTOWAKEUP_1.wkup_int bit. The wakeup status is available in INT_STATO.wkup_int. When woken up, an interrupt can be generated and mapped to the interrupt pins. The Low-power wake-up function supports following configurations: Selectable axis for wake-up: the Low-power wake-up function supports independent activation/deactivation of each acceleration axis for function evaluation. This is performed by setting the bits WKUP_INT_CONGIF0.wkup_X/Y/Z_en accordingly. Page 24 / Confidential Reference update mode (configured by setting WKUP_INT_CONFIG0.wkup_refu) | wkup_refu<1:0> | description of auto-wake references update mode | |----------------|---| | b00 | manual update The references (int_wkup_refX/Y/Z) are not updated automatically, they shall be set manually by user | | b01 | one time The references is updated every time at entering low power mode. The first measured acceleration in Low-power mode is used as reference. | | b10 or b11 | every time The reference is updated every time after the acceleration conversion in low-power mode | The reference values are 8-bit signed values. The activity measurement takes the upper 8 bits of the acceleration value and compares against the reference WKUP_INT_CONFIG[2-4].int_wkup_ref[x,y,z]. - Threshold for activity detection: the threshold for activity detection (comparison of the difference between the measured acceleration data and reference acceleration data) has 8-bit resolution, corresponding to the upper 8 bits of the absolute value of the 12bit acceleration, WKUP_INT_CONFIG1.int_wkup_thres. - Number of samples for decision: the number of samples for wake-up decision is configured between 1 and 8 by the register WKUP_INT_CONFIGO. num_of_samples (number of samples is the register value + 1). The condition for activity-driven automatic wake-up from low-power is (assuming all 3 axes are enabled): (abs(a_x-ref_x) > thresh_x) OR (abs(a_y-ref_y) > thresh_y) OR(abs(a_z-ref_z) > thresh_z) This condition must persist for WKUP_INT_CONFIG0. num_of_samples data samples. BST-BMA400-DS000-00 | Version 0.1 | November 2017 The wake-up on activty is illustrated in the following picture Wake-up interrupts can be used latched and non-latched (see chapter TBD). Latched and non-latched behavior is shown below. Pin == INT_STAT0.wkup. INT_STAT0 cleared by read Page 26 / Confidential Pin and INT_STAT0.wkup == interrupt condition. Interrupt evaluated in low-power mode only. Read INT_STAT0 has no effect #### Auto low-power mode Power mode can be changed from Normal to Low-power mode through a serial interface command. It is also possible to change automatically (without a serial command) from normal mode to low-power mode, called auto low-power. The following timed and non-timed triggers are supported for automatic switching from Normal mode to Low-power mode: - First data ready: (AUTOLOWPOW_1.auto_lp_timeout =b00) If AUTOLOWPOW_1.drdy = '1', BMA400 is set into low-power mode when new data calculation is finished. - Generic interrupt 1: (AUTOLOWPOW_1.auto_lp_timeout =b00) If AUTOLOWPOW_1.gen1_int = '1', BMA400 is set into Low-power mode as soon as the Generic interrupt 1 is detected. (see chapter 4.6) - low_power_timeout (AUTOLOWPOW_1.auto_lp_timeout =b01): the sensor is set into low-power mode as soon the timeout counter reaches AUTOLOWPOW_1.auto_lp_timeout_thres. The auto-low-power timeout counter is 12 bits wide and is incremented every 2.5ms. - low_power_timeout with counter reset on activity detected (AUTOLOWPOW_1.auto_lp_timeout =b10,b11): the timeout counter is restarted in case generic interrupt 2 (see chapter 4.6) is asserted. - The sensor is set into low-power mode when finally the timeout counter reaches AUTOLOWPOW_1.auto_lp_timeout_thres. The auto-low-power timeout counter is 12 bits wide and is incremented every 2.5ms. Page 27 / Confidential The timed timeout trigger can be configured by setting AUTOLOWPOW_1.auto_lp_timeout bits in register according to the table below. | AUTOLOWPOW_1.auto_lp
_timeout<1:0> | Description | |---------------------------------------|--| | b00 | timeout disabled, use either AUTOLOWPOW_1.drdy or AUTOLOWPOW_1.gen1_int to switch automatically into low-power mode | | b01 | timeout active, BMA400 switching into low-power mode as soon as timeout counter reaches AUTOLOWPOW_1.auto_lp_timeout_thres | | b10 or b11 | Low-power timeout active, timeout counter resets on activity detection | Multiple selections of auto-low-power conditions are supported. Any selected condition switches the device into low-power mode (OR condition). The logical connection of the auto-low-power conditions Page 28 / Confidential #### 4.3. Sensor Data #### **Acceleration Data** The width of acceleration data is 12 bits given in two's complement representation in the registers 0x04 to 0x09 (<u>ACC X LSB</u>, <u>ACC X
MSB</u>, <u>ACC Y LSB</u>, <u>ACC Y MSB</u>, <u>ACC Z LSB</u>, <u>ACC Z MSB</u>). The 12 bits for each axis are split into an MSB upper part and an LSB lower part. In order to ensure the integrity of the acceleration data read, the content of all data registers must be read in a single burst read, since these registers are write-protected during a read access. As soon as the burst read is finished the register content will be updated if new data are available. #### **Filter Configuration** Two major filter paths are implemented, see blockdiagram. Filter output can either be fed into the data registers, into the FIFO, or used to process interrupts in the interrupt engine. This is selectable by customer. Filter1 (acc_filt1) has a data rate between 800Hz and 12.5Hz, controlled by ACC_CONFIG0.acc_odr. Its bandwidth can be configured additionally by ACC_CONFIG0.filt1_bw: - ACC_CONFIG0.filt1_bw = $0x0 \rightarrow 0.48 \times ODR$ - ACC_CONFIG0.filt1_bw = $0x1 \rightarrow 0.24 \times ODR$ | ACC_CONFIG0.acc_odr <3:0> | Output Data Rate [Hz] | |---------------------------|-----------------------| | 0xB 0xF | 800 | | 0xA 7 | 400 | | 0x9 | 200 | | 0x8 | 100 | | 0x7 | 50 | | 0x6 | 25 | | 0x0 0x5 | 12.5 | Filter2 (acc filt2) has a fixed data rate of 100 Hz. In addition, these 100 Hz data is used by a third filter and filtered with a bandwidth of 1 Hz. The output data rate will stay at 100 Hz. This data can be used as input for the data registers and also in the interrupt engine. Access via FIFO is not possible. | ACC_CONFIG2.data_src_reg<1:0> | Filter output going into data registers (not FIFO!) | |-------------------------------|---| | 0x0,0x3 | acc_filt1(selectable ODR) | | 0x01 | acc_filt2 (100Hz ODR) | | 0x02 | acc_filt_lp (1 Hz BW, 100 Hz ODR) | | FIFO_CONFIG0.fifo_data_src | Filter output going into FIFO | |----------------------------|-------------------------------| | 0x0 | acc_filt1(selectable ODR) | | 0x1 | acc_filt2 (100Hz ODR) | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 29 / Confidential In low-power mode, only data at 25Hz ODR is available. Depending on the setting of ACC_CONFIG0.osr_lp, noise and current consumption is controllable. #### G-range selection The measurement g-range can be selected between 2g and 16g. It can be configured ACC_CONFIG1.acc_range. | ACC_CONFIG1.acc_range<1:0> | Selected g-range | |----------------------------|------------------| | 11 | 16g | | 10 | 8g | | 01 | 4g | | 00 | 2g | #### **Data Ready Interrupt** This interrupt fires whenever a new data sample set is complete. This allows a low latency data readout, especially avoiding to interfere with front-end conversion activity. In non-latched mode, the interrupt and the flag in Register INT STATO are cleared automatically after 1/(1600Hz). If this automatic clearance is unwanted, latched-mode can be used. In order to enable/use the data ready interrupt map it on the desired interrupt pin via INT1 MAP or INT2 MAP. #### **Temperature Sensor** The temperature sensor has 8 bits resolution. The temperature value is defined in Register TEMP DATA and updated every 160ms. It is always on when the sensor is active (in normal and in low-power mode, not in sleep mode). | Value | Temperature | | |-------|-------------|----------| | 0x7F | 87.5 °C | \ ' | | | ••• | . 0 | | 0x02 | 25 °C | XII | | | | | | 0x80 | -40.0 °C | 5 | The temperature sensor is calibrated with a precision of +/-5°C. Page 30 / Confidential #### **Sensor Time** The BMA400 has an integrated sensor timer. The sensor time can be used for synchronization purposes between the external MCU and the sensor. The sensor timer counts the clock cycles generated by the system clock which is always running in low-power and normal modes. Sensor timer is inactive in sleep mode and reset when entering the sleep mode. Counter values are stored in registers SENSOR_TIME(0/1/2). The sensor timer has a resolution of 21 bits stored in 3 bytes. For compatibility with other sensors that use faster counters with 25.6 kHz, the lower three bits of the counter (sensor_time<2:0>) are always 0. Thus, the lowest significant bit of the counter is sensor_time<3>. After the timer has reached the maximum value, the counter resets to zero. | Bit <i>m</i> in sensor_time | 23 | 22 | 21 | 8 | 7 | 6 | 5 | 4 | 3 | |-----------------------------|--------|--------|-------|-----|-----|-----|-------|-------|--------| | Resolution [ms] | 327.68 | 163.84 | 81.92 | 10 | 5 | 2.5 | 1.250 | 0.625 | 0.3125 | | Update rate [Hz] | 0.0031 | 0.0061 | 0.012 | 100 | 200 | 400 | 800 | 1600 | 3200 | The sensortime is synchronized with the data capturing in the data register and the FIFO. The sensortime supports multiple seconds of sample counting and a sub-millisecond resolution. Burst reads on the registers <u>SENSORTIME 0</u> to <u>SENSORTIME 2</u> deliver always consistent values, i.e. the value of the register does not change during the burst read. Page 31 / Confidential #### 4.4. FIFO #### **FIFO description** Acceleration data are stored in a 1024Bytes FIFO. The FIFO is written only in normal mode. When FIFO_CONFIGO.fifo_stop_on_full = '0', the device is in stream mode. When FIFO_CONFIGO.fifo_stop_on_full = '1', the device is in FIFO mode. - Stream mode: overwrites oldest data on FIFO full condition - FIFO full mode: discards newest data on FIFO full condition The FIFO depth is 1024 byte and supports the following interrupts: - FIFO full interrupt - FIFO watermark interrupt The data to be collected is defined through $fifo_data_src$, $fifo_x_en$, $fifo_y_en$ and $fifo_z_en$ bits. FIFO is disabled when no writing is defined; FIFO is therefore disabled when $fifo_x_en=20$, $fifo_y_en=20$ and $fifo_z_en=20$. If the FIFO is disabled when FIFO byte count is greater than 0, no new frame is written to the FIFO, but FIFO is operational: - Frames already written in the FIFO remain stored and can be read out - FIFO interrupts and their corresponding statuses are still evaluated - after all bytes are read out, sensortime (if enabled) and empty frames are generated - FIFO can be flushed #### FIFO input data Storing of acceleration measurement results is enabled by setting respectively $fifo_x_en = '1'$ and/or $fifo_y_en = '1'$ and/or $fifo_z_en = '1'$. Storing of data can be enabled or disabled on a per-axis basis in any combination. acc_filt1 or acc_flit2 data are stored in the FIFO depending on fifo_data_src bit. Thus, the data rate with which data is stored in the FIFO equals the data rate with which the filter serving as data source is configured. The number of bytes available in the FIFO is readable through fifo bytes cnt<10:0>. The FIFO byte count registers FIFO_LENGTH0 and FIFO_LENGTH1 are updated only when a full frame has been written to the FIFO and is available for read-out. FIFO byte count registers are also updated after each fullframe read from the FIFO. FIFO byte count registers increment or decrement is equal to the frame length; intermediate increments (corresponding to a partial frame) are not readable. The FIFO shall support two modes for acceleration data storage in FIFO: 12 bits stored as two bytes into FIFO and 8-bit mode stored as single byte into FIFO per acceleration axis. The 8-bit mode activation shall be performed by setting FIFO CONFIGO.fifo 8bit en = '1'. Page 32 / Confidential #### FIFO read out The FIFO can be read out via FIFO_DATA register in a single burst read, this allows a complete reading of the FIFO content within one burst read transaction. FIFO read out is not supported in Sleep mode. FIFO read out is supported in normal and Low-power mode if $FIFO_PWR_CONFIG.fifo_read_en =$ '1'. The minimum delay T_{fifo_read} has to be applied between the write command of $FIFO_PWR_CONFIG.fifo_read_en =$ '1' and the start of FIFO read. Don't read the FIFO when $FIFO_PWR_CONFIG.fifo_read_en =$ '0'. #### FIFO overflow behavior A FIFO overflow occurs if the FIFO is full and a new data is to be written to the FIFO. FIFO full means free space is less than maximum frame length of 9 bytes. The largest frame is 7 bytes long, however each time FIFO is written (at the end of the measurement), 9 bytes can be written to the FIFO in total, consisting of 2 frames: one with the measurement results (maximum of 7 bytes), and configuration change frame consisting of 2 bytes. The definition of the full interrupt uses 9 bytes limit to give the host system time to react to it before the FIFO overflows. In case of overflow the FIFO can either stop recording data or overwrite the oldest data. The behavior is controlled by register *fifo_stop_on_full*. Streaming mode, *fifo_stop_on_full* = '0': if the new frame does not fit inside the remaining free space in the FIFO RAM, FIFO will repeatedly delete the oldest frame until it creates enough space for the new one. FIFO stop-on-full mode, fifo stop on full = '1': The newest frame is discarded. Normal operation resumes if the FIFO full condition no longer persists. Page 33 / Confidential #### **Frames** The FIFO captures data in frames, which consist of a header and a payload. • Each data frame consists of a one byte header describing properties of the frame, (which data are included in this frame) and the data itself. Beside the data frames, there are control frames, sensortime frames and empty frames. The header has a length of 8 bit and the following format: | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|--------|---------|---------------|---|---|---|---|---| | Header | fh_mod | le<1:0> | fh_param<4:0> | | | | 0 | | fh_mode and fh_param<4> indicate whether the frame is a data frame (accel data), a sensortime frame (sensortime data), a control frame or an empty frame (all data 0). A data frame is composed of the said header and a set of acceleration data organized as described in table below. | Bit | 7 | 6 | 5 | 4 | 3 | | 2 | 1 | 0 |
---------|---|---------|---------------|--------|---------|--|---|---|---| | Header | fh_mod | le<1:0> | fh_param<4:0> | | | | | 0 | | | Data 17 | 1 7 Data bytes, number depending of 12 or 8bit storage mode and number of | | | | | | | | | | | | | | axes e | nabled. | | * | | | These fh mode and fh parm fields are defined below | fh_mode<1:0> | Definition | fh_param <4> | fh_param <3> | fh_param <2:0> | |--------------|-------------------|-----------------------|---------------------------------|----------------| | 0b10 | Sensor data frame | b0: Sensor data frame | b0: 8bit mode
b1: 12bit mode | Enabled axes | | 0b10 | sensortime frame | b1: sensortime frame | no meaning | No meaning | | 0b01 | Control frame | | . 0 | b0001 | | Name | | fh_parm<2:0> | | |---------|-----------|--------------|-----------| | Bit | 2 | 1 | 0 | | Content | z-enabled | y-enabled | x-enabled | f_param<3:0>=0b0000 is invalid for regular mode, a header of 0x80 indicates an uninitialized frame. In a data frame, fh_param<2:0> defines which sensors axes are included in the data part of the frame. fh_param<3> defines in which resolution – 8 or 12bit – the data are stored. BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 34 / Confidential fh_param<2/1/0> indicate whether Z, y or x axis data are stored. Thus, fh_param<3:0> allows to calculate the amount of data payload following the header. The maximal payload is 6 bytes if all axes are enabled and 12bits are stored. 3bytes payload are needed if all axes are enabled and 8bits are stored. A lesser amount of data is required if one or two axes are disabled. As an example, data frames with 12bit and 8bit resolution are shown below, all axes enabled | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|-------------------------------|-----|-----|----------|------------|------------|-------|---| | Header | 1 | 0 | 0 | 1: 12bit | 1: Z | 1: Y | 1: X | 0 | | | | unu | sed | | | acc_x | <3:0> | | | | acc_x- | | | | <11:4> | | | | | data | unused | | | (,(0) | acc_y<3:0> | | | | | | . 7 | | | acc_y | <11:4> | | | | | | unused acc_z<3:0> acc_z<11:4> | | | | | acc_z<3:0> | | | | | | | | | | | | | | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |--------|-------------|---|------|---------|--------|------|------|----|--| | Header | 1 | 0 | 0 | 0: 8bit | 1: Z | 1: Y | 1: X | 0 | | | | C | | | acc_x< | <11:4> | 8 | | | | | data | acc_y<11:4> | | | | | | | | | | | | | Allo | acc_z< | <11:4> | 2 | | 70 | | A FIFO empty frame is a sensor data frame, this is what the header indicates (fh_mode=b10). fh_param<2:0>=b000 shows that the frame delivered is an empty frame and contains 1 data byte of value 0x00 after the header. This kind of frame is delivered if the last frame in the FIFO was already read out or if the FIFO is empty. The format is shown below. | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|---|---|---|---|---|---|---|---| | Header | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Data | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 35 / Confidential If fh_param<4:0>= b00000, the header indicates a sensor-time frame to come, its format shown below. | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | |--------|--------------------|---|---|---|---|---|---|---|--|--| | Header | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | time | sensor_time<7:0> | | | | | | | | | | | | sensor_time<15:8> | | | | | | | | | | | | sensor_time<23:16> | | | | | | | | | | The data for the sensor-time frame consists of registers <code>sensor_time2/1/0</code> at the moment the sensor-time frame transmission has started. A sensor-time frame is not stored in the FIFO, it is created on-the-fly and delivered with a FIFO burst read operation when all acceleration data frames have been transmitted and the burst read carries on requesting data. The sensortime frame will only be delivered if fifo_time_en = '1'. The already mentioned control frame looks as follows | Bit | 7 | 6 | 5 | 4 | 3 | 2 | | 0 1 | 0 | |--------|---|---|---|---|---|----------------|----|-----------------|------------------| | Header | 0 | 1 | 0 | 0 | 1 | 0 | | 0 | 0 | | Opcode | 0 | 1 | 1 | 0 | 0 | acc_config1_cl | hg | acc_config0_chg | fifo_config0_chg | - fifo_config0_chg = b1: The control frame will be inserted when FIFO_CONFIG0.fifo_data_src change becomes active in FIFO. - acc_config0_chg = b1: The control frame will be inserted when ACC_CONFIG0.filt1_bw change is valid for data stored in FIFO. - acc_config1_chg: The control frame will be inserted when ACC_CONFIG1.acc_odr or ACC_CONFIG1.osr or ACC_CONFIG1.acc_range change is valid for data stored in FIFO. If more changes become active at one acceleration sample just one control frame will be inserted, with more than one of the three CONF chg bits set. The data format for data frames is identical to the format defined for the data registers: signed integer. If no axis is selected for FIFO storage no frames are written into the FIFO. BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 36 / Confidential #### **Under-read** In case the FIFO is under-read (not all frames were taken from the FIFO, but the last frame read was read entirely), the next readout will continue at the frame that was just about to be sent. #### Partial frame read In case the FIFO is under-read and a partial data frame read occurred (not all frames were taken from the FIFO, and the last frame read was not read entirely), the entire last data frame is repeated upon the next read access. When *fifo_stop_on_full=*'0' oldest frames are overwritten when new frames are available and the FIFO is full. When this happens, the partially read data frame is not repeated but the oldest frame available in the memory is sent instead. Sensortime frame is not repeated when it is read only partially. If the read of a frame is interrupted during the frame's last byte read, this partial read is not recognized and the frame is discarded like a fully read frame. #### Over-read If the burst read continues after all frames have been read out, a sensortime frame is sent after the FIFO becomes empty during a burst read operation if *fifo_time_en=*'1'. After that or when FIFO was completely read, the empty frame is returned as long as the burst read is active. #### Reading nearly-empty FIFO FIFO contains a reading cache buffer for a complete frame. When there is only one unread byte left in the reading buffer, the FIFO starts prefetching the next frame from the memory to be ready for burst reading if there is any further frame, or it evaluates itself as empty. If new data frames/config frames are written to the FIFO before this reading event, the FIFO will behave as containing one further frame and the new frame will be made available for reading as the next frame. If new data/config frames are written to the FIFO after the moment when "only one unread byte is left in the buffer", then user will see the FIFO as empty after the current frame will be finished. Page 37 / Confidential #### FIFO flushing A FIFO flush operation is executed when a *flush* command is written to the CMD register, when a soft-reset command is issued or when the device changes power mode and FIFO auto flush is enabled through *FIFO_CONFIGO.auto_flush* bit. For system simplicity a flush is executed as soon as possible. FIFO can be written or flushed at any time when FIFO is not read (*FIFO_PWR_CONFIG.fifo_read_en =* '0') Flush operation does not depend on serial interface activity to finish. Power mode transition (or write) does not have to wait for the Flush to finish. Serial interface always reads what is in the FIFO at the moment the next frame is prepared for the output buffer. Empty frames are read if the FIFO was flushed during the transaction. #### FIFO watermark interrupt Watermark interrupt status is asserted when the watermark interrupt condition is satisfied i.e. when the filling level of the FIFO (number of unread bytes in the FIFO) is greater or equal to the watermark level ($fifo_bytes_cnt<10:0> \ge fifo_watermark<10:0>$). When the FIFO watermark level is set to zero, the interrupt condition is never satisfied. The status of the watermark interrupt can be read back through the fwm_int bit. Interrupt status is cleared by reading the *fwm_int* bit when the FIFO filling level is lower than the watermark level. The watermark interrupt is propagated to INT1/2 pad only when it is enabled by setting bit *fwtm_en* = '1'. The interrupt is only evaluated after entire frames have been read out or written (as the counter is only in-/decreased on a frame basis). Watermark interrupt condition is also updated after the end of the serial interface (burst read) transaction which wrote into the registers *fifo_watermark<10:8>* or *fifo_watermark<7:0>*. The behavior of the FIFO watermark is shown in the figures below. Page 38 / Confidential FIFO watermark interrupt, non-latched, with reads from FIFO FIFO watermark interrupt, latched, with reads from FIFO Page 39 / Confidential #### FIFO full interrupt Full interrupt status is asserted when the full interrupt condition is satisfied, when the filling level of the FIFO (number of unread bytes in the FIFO = fifo_bytes_cnt<10:0>) is equal or higher than 1016. The status of the full interrupt can be read back through the ffull int bit. Interrupt status is cleared by reading the *ffull_int* bit high '1' when the FIFO filling level is lower than 1016. The full interrupt is propagated to INT pad only when it is enabled by setting bit $ffull_en = '1'$. The behavior of the FIFO full interrupt is shown in the figures below. FIFO full
interrupt, non-latched, with reads from FIFO FIFO full interrupt, latched, with reads from FIFO Page 40 / Confidential #### 4.5. General Interrupt Pin configuration #### **Interrupt Pin Mapping** The content of the interrupt status registers can be mapped to pins INT1 or INT2, by setting the corresponding bits from the registers INT1 MAP, respectively INT2 MAP or INT12 MAP. To disconnect the features outputs to the external pins, the same corresponding bits must be reset, from the registers, <u>INT1 MAP</u>, respectively <u>INT2 MAP</u>. Once a feature triggered the output pin, the Host can read out the corresponding bit from the register, INT_STAT1 or INT_STAT1 or INT_STAT1 or INT_STAT2. #### Interrupt latching Interrupts can be configured as non-latched or latched. The mode is selected by INT_CONFIG1.latch int. Latching determines when an interrupt is released. The behavior of the different interrupt modes is shown graphically in the figure below #### Non-latched mode In the non-latched mode (<u>INT_CONFIG1.latch_int</u> = 0), both the INT pins (the contribution to the 'or' condition for the INT pin) and the interrupt status bit in INT_STAT are reset when the interrupt activation condition is released. Pin and INT_STAT0.<int> == interrupt condition. Page 41 / Confidential #### Latched mode In latched mode (<u>INT_CONFIG1.latch_int</u> = 1) an asserted interrupt status in INT_STAT(0/1/2) and the INT pin (the contribution to the 'or' condition for the INT pin) is cleared by reading the corresponding status register. If the FIFO filling activation condition still holds true then the interrupt status is not cleared. Data ready and advanced interrupts' statuses are cleared upon reading INT_STAT register. Pin == INT STAT0.<int>, INT STAT0 cleared by read. Interrupt reasserts if condition still valid #### Interrupt behavior during power mode switching When the device leaves normal mode, all internal interrupt status registers are cleared. There are two exceptions: - The step counter keeps its state (i.e. the step count) on mode switching. If the mode is switched to normal with enabled step counter, it continues counting on the previous value. The internal interrupt status is cleared. - FIFO interrupts are not cleared by mode switching Page 42 / Confidential #### **Electrical Interrupt Pin Behavior** Both interrupt pins INT1 and INT2 can be configured to show the desired electrical behavior. The 'active' level of each interrupt pin is determined by the int1_lvl and int2_lvl bits. If int1 | lvl = 1 / int2 | lvl = 1, then pin "INT1" / pin "INT2" are active HIGH. The characteristic of the output driver of the interrupt pins is configured with bits *int1_od* and *int2_od*. By setting bits *int1_od* / *int2_od* to '1', the output drivers show open-drive characteristic, by setting the configuration bits to 0, the output drivers show CMOS push-pull characteristic. When open-drive characteristic is selected in the design, an external pull-up or pull-down resistor should be applied according the int(1/2) IvI configuration. For all interrupts, the user is responsible of the settings, no hardware checks of the settings are implemented before processing interrupts. | int(1/2)_od | int(1/2)_lvl | "INT1" / "INT2" | output driver | |-------------|--------------|-----------------|---------------------------------------| | 0 | 0 | active '0' | push-pull characteristic | | 0 | 1 | active '1' | push-pull characteristic | | 1 | 0 | active '0' | open-drive characteristic sink (NMOS) | | 1 | 1 | active '1' | open-drive characteristic source | Page 43 / Confidential #### 4.6. Interrupt Features The following interrupts exist in the BMA400: #### Basic interrupts - Data ready interrupt - FIFO watermark - FIFO full - Interrupt engine overrun - Wake-up interrupt #### Advanced Interrupts - Generic interrupt 1 - Generic interrupt 2 - Step detector interrupt/step counter - Activity changed interrupt - Single tap / Double tap sensing - Orientation changed interrupt Basic interrupts can all be enabled independently from each other. Advanced interrupts are only available in normal mode, the interrupt engine is disabled in low power mode and sleep mode. The interrupts served by the interrupt engine. They share the same resources and time-slices, thus, enabling too many interrupts of this type in parallel lead to a so-called Interrupt engine overrun. This interrupt indicating that the interrupt engine could not finish calculating all selected interrupt conditions. If this occurs, advanced interrupts of lesser importance must be disabled until the Interrupt engine overrun condition/interrupt vanishes. Any change of an interrupt configuration must be executed when the corresponding interrupt is disabled. Most interrupts require a data rate of 100Hz, only tap sensing requires 200Hz. It is then necessary to configure the data source of the tap sensing interrupt, filter acc_filt1, to 200Hz, which implies that the other interrupts requiring 100Hz data rate use another filter. #### Interrupt pin mapping, interrupt status The BMA400 supports flexible INT1 and INT2 pin mapping configurations via interrupt mapping registers INT1_MAP, INT2_MAP and INT12_MAP. Depending on these registers settings, all interrupt sources are mapped to the INT1 and INT2 pins. The status of the interrupts can be read out at the status registers <u>INT_STAT0</u>, <u>INT_STAT1</u> and <u>INT_STAT2</u>. Additionally, the step counter value is stored in the registers <u>STEP CNTO</u>...<u>STEP CNT3</u>. These registers need to be read out using a burst read to avoid one register getting updated while another step count register is read. Page 44 / Confidential #### Generic Interrupt 1 and 2 The generic interrupts 1 and 2 have the exact same implementation. They are designed to detect activity or inactivity. The generic interrupt monitors acceleration change with respect to a reference, or in other words, the difference between actual acceleration and reference is calculated and compared against a threshold. The comparison is de-noised using a hysteresis. The generic interrupt is triggered when the above mentioned difference lasts for a minimum time. Reference, threshold, hysteresis and duration are configurable. Both generic interrupts work the same way, but have separate sets of registers to be processed independently of each other. - Generic interrupt 1 is enabled by 'INT_CONFIG0.gen1_int_en = 1' - Generic interrupt 2 is enabled by 'INT CONFIG0.gen2 int en = 1' The generic interrupt supports selectable acceleration axes for evaluation: $GEN(1/2)INT_CONFIG0.act_(x/y/z)_en$. $GEN(1/2)INT_CONFIG1.comb_sel$ selects if the interrupt shall be based on an AND ($comb_sel = 1$) or an OR ($comb_sel = 0$) combination of all enabled axes. The acceleration data source is selectable between acceleration from *acc_filt1* or *acc_filt2* by setting GEN1/2INT CONFIGO. data src (0: acc_filt1, 1:acc_filt2). The data rate for the filter output must be 100Hz. Using acc_filt2 is recommended. In this case acc_filt1 can be used independently from the interrupt engine for the data output registers and the FIFO. Page 45 / Confidential | GEN(1/2)INT_CONFIG0.data_src | Source for generic interrupt data | |------------------------------|-----------------------------------| | 0 | acc_filt1 | | 1 | acc_filt2 | The mentioned reference can be static (user defined) or it can be updated dynamically. The reference acceleration registers support reference update modes after comparison evaluation has been done. The mode is set in GEN(1/2)INT_CONFIG0.act_refu | GEN(1/2)INT_CONFIG0.act_refu | Description of reference update mode | |------------------------------|--| | b00 | no update – reference is statically set by user using GEN(1/2)INT_CONFIG4/5/6/7/8/9 | | b01 | one time – the reference is updated once by acceleration data taken from the data source (acc_filt1 or acc_filt2) after triggering the interrupt | | b10 | every time – the reference is updated at the end of the interrupt evaluation, it is taken from the data source (acc_filt1 or acc_filt2). This mode especially makes sense for activity detection where a "constantly" increasing acceleration shall be detected. | | b11 | every time - the reference is updated at the end of the interrupt evaluation, it is taken from the data source acc_filt_lp . Remember the large group delay (1Hz bandwidth) of acc_filter_lp | As already mentioned, both interrupts can be configured to detect activity or inactivity. This is done using GEN(1/2)INT_CONFIG1.criterion_sel. GEN(1/2)INT_CONFIG1.criterion_sel = 0: inactivity detection, referenced acceleration below threshold GEN(1/2)INT CONFIG1.criterion sel = 1: activity detection, referenced acceleration above threshold The reference values for each axis are stored in registers $GEN(1/2)INT_CONFIGX.int_th_ref(x/y/z)$, they are 12-bit signed values. The threshold value are stored in register *GEN(1/2)INT_CONFIGX.gen_int_thres*, it is 8-bit unsigned value, fixed resolution of 8mg for all measurement ranges. The interrupt supports a configurable duration condition: $GEN(1/2)INT_CONFIGX.gen1_int_dur<15:0>$ indicates the resolution in data ready ticks. So, the duration depends on the data rate the selected filter delivers. BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 46 / Confidential A hysteresis helps to suppress noise in the decision-making. *GEN(1/2)INT_CONFIG0.act_hyst*. Following hysteresis configurations for the activity comparison are available: ####
GEN(1/2)INT_CONFIG0.act_hyst Description of hysteresis amplitude (mg) | b00 | | 0 | |-----|-----|----| | b01 | 4 | 24 | | b10 | 70, | 48 | | b11 | 0 | 96 | Page 47 / Confidential #### **Step Detector / Step Counter** The Step Counter algorithm is optimized to high accuracy, while Step Detector is optimized to low latency. Both are running in parallel, once enabled, but the Step Detector interrupt output is mutually exclusive with the Step Counter watermark interrupt. The step counter computation is enabled if INT_CONFIG1.step_int = '1'. #### Step Counter: The step counter accumulates the steps detected by the step detector interrupt, and makes available the 32 bit current step counter value in the 4 registers STEP_CNT0... STEP_CNT3, each holding 8bit. #### Step Detector: The Step Detector feature is optimized for low latency. Once a step is detected the INT_STAT1.step_int<1:0> interrupt signal is set to 1 There are situations when the step counting value is different than the sum of steps detected by the step detector. #### Step Counter/Detector sensitivity: The Step Counter and Detector sensitivity can be modified by setting the parameters to the corresponding values, according to the register map. By default, the Normal sensitivity is configured. Default (after reset) parameters have been obtained using hundreds of experiments used to tweak these parameters for optimal performance. Changing these parameters should only be done by experts. The reset parameters can be overwritten before enabling the step counter/interrupt. The step count value is reset during power-on-reset, soft-reset, or step counter reset command transmitted to the device via the command Register CMD. The step count value is not reset when the step counter is enabled or disabled. The step counter uses 24 configuration registers *STEP_COUNTER_CONFIG0* to *STEP_COUNTER_CONFIG23*. Page 48 / Confidential #### **Activity changed interrupt** The device provides an "activity changed" interrupt. The activity changed interrupt evaluates acceleration data for a certain activity over a predefined observation period and sets an interrupt after activity change is detected compared to previously evaluated activity. The enable signal for this interrupt is INT_CONFIG1.actch_int. The activity changed interrupt supports data source selection by setting ACTCH_CONFIG1.actch_data_src bit. The acceleration data source shall be selectable between acceleration from acc_filt1 and acceleration acc_filt2. | 6. | data_src | | Description | | |----|----------|-----|-------------|--| | | 0 | 110 | acc_filt1 | | | | 1 | .0) | acc filt2 | | Following steps are performed for activity changed interrupt evaluation: - Evaluation of the current activity parameter: average difference of the dynamic acceleration with respect to the quasi-static acceleration (low-pass filtered value acc_filt_lp) over a certain observation period. - Comparison of the currently evaluated activity parameter with last stored activity parameters (activity parameters for previous observation period): abs(curr_value last_value) > threshold. - Update / store the activity parameters: curr_value => last_value. - Activity changed status bits (actch_z_int, actch_y_int, actch_x_int): signalize activity changed for corresponding axes, "1" for activity changed. Following configurations are supported for activity changed interrupt: - Selectable acceleration axis for evaluation (actch_x_en, actch_y_en, actch_z_en) - Threshold for activity change. The configuration of the activity threshold is defined by ACTCH CONFIGO.actch thres<7:0> - Number of samples of the observation duration. The observation period is defined by the number of data samples used for the evaluation of the activity parameters. The observation period is defined by the setting ACTCH_CONFIG1.actch_npts. | ACTH_CONFIG1.actch_npts<3:0> | Number of samples for observation | |------------------------------|-----------------------------------| | 0000 | 32 | | 0001 | 64 | | 0010 | 128 | | 0011 | 256 | | 0100 1111 | 512 | Page 49 / Confidential #### **Tap Sensing Interrupt** The tap interrupt is operating on an input data rate of 200Hz. It can detect single and double taps. For configuration, there are the registers *TAP_CONFIG* and *TAP_CONFIG_1*. (TAP_CONFIG. tap_sensitivity) allows to modify the threshold for the minimum tap amplitude (TAP_CONFIG_1. quiet) and (TAP_CONFIG_1. quiet_dt) allow to define the duration of quiet times between double taps and between taps. acc_filt1 is the data source for the tap interrupt, so, this filter must be configured to 200Hz ODR if this interrupt shall be enabled. There are two different interrupts that can be enabled separately: single tap (INT_CONFIG1.s_tap_int) and double tap detection (INT_CONFIG1.d_tap_int). The status of the interrupts is available in INT_STAT1.s_tap_int and INT_STAT1.d_tap_int. With INT12_MAP.tap_int1 the logical OR of both interrupt statuses can be mapped to the INT1 pin. INT12_MAP.tap_int2 does the same for the INT2 pin. | Config Register | Comment | |---|---| | TAP_CONFIG. tap_sensitivity[2:0] | modifies the threshold for the minimum tap amplitude The three bits form an unsig n ed integer ('d0 'd7) | | reset default: "000" | | | TAP_CONFIG. sel_axis[1:0] reset default: "00" | Modifies the selection of the data provided to the algorithm If TAP_CONFIG.sel_axis =="00" use Z axis data If TAP_CONFIG.sel_axis =="01" use Y axis data If TAP_CONFIG.sel axis =="1X" use X axis data | | reset deladit. 00 | II TAI _OOM TO.SCI_AXIS == 1X use X uxis uata | | TAP_CONFIG_1. quiet[3:2] | QUIET_TIME = 'd60 if TAP_CONFIG_1.quiet=="00" QUIET_TIME = 'd 80 if TAP_CONFIG_1.quiet=="01" QUIET_TIME = 'd 100 if TAP_CONFIG_1.quiet=="10" | | reset default: "01" | QUIET_TIME = 'd 120 if TAP_CONFIG_1.quiet=="11" | | TAP_CONFIG_1. quiet_dt[5:4] | QUIET_TIME_DT = 'd4 if TAP_CONFIG_1.quiet_dt=="00" QUIET_TIME_DT = 'd 8 if TAP_CONFIG_1.quiet_dt=="01" QUIET_TIME_DT = 'd 12 if TAP_CONFIG_1.quiet_dt=="10" | | reset default: "00" | QUIET_TIME_DT = 'd 16 if TAP_CONFIG_1.quiet_dt=="11" | | TAP_CONFIG_1. tics_th[1:0] | TICS_TH= 'd6 if TAP_CONFIG_1.tics_th=="00" TICS_TH= 'd9 if TAP_CONFIG_1.tics_th=="01" TICS_TH= 'd12 if TAP_CONFIG_1.tics_th=="10" | | reset default: "10" | TICS_TH= 'd18 if TAP_CONFIG_1.tics_th=="11" | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 50 / Confidential #### Interrupt engine overrun The interrupt overrun ishall be asserted if filter and interrupt computations cannot be finished in a sample acquisition time. The interrupt status is mapped (mirrored) to all interrupt registers *INT_STATO*, *INT_STAT1* and *INT_STAT2*, bit ieng_overrun_stat. The interrupt is cleared by reading of any of these registers. The interrupt is mapped to pads INT1 and INT2 by the registers *INT1_MAP*. *ieng_overrun_int1* and *INT2_MAP*. *ieng_overrun_int2*. The interrupt behavior is not dependent on non-latch, latch mode setting. Page 51 / Confidential #### Orientation change interrupt The orientation-change interrupt is enabled by (INT_CONFIG0.orientch_int) = 1. The interrupt is optimized to detect a (screen) orientation change when the product is used in a wearable device or similar application. The orientation change is evaluated by monitoring the acceleration change in X/Y/Z direction (each individually selectable) and by measuring the "stability" of the new orientation. The stability of the orientation is evaluated by monitoring the difference between the last acceleration value and current acceleration values. The orientation change is evaluated as difference to the last stable orientation stored in the reference registers. The orientation changed interrupt is generated as soon as the orientation change condition is fulfilled on one of the enabled axes selected by (ORIENTCH_CONFIG0.orient_X/Y/Z_en). Signal flow for orientation change interrupt The orientation change interrupt supports two input acceleration data streams for evaluation: acc_filt2; and the low-pass filtered data source with 1Hz cut-off frequency acc_filt_lp | ORIENTCH_CONFIG0.data_src | Data source for Interupt | |---------------------------|--------------------------| | 0 | acc_filt2 | | 1 | acc_filt_lp | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 52 / Confidential The threshold for the orientation change interrupt can be configured in the register ORIENTCH_CONFIG1.orient_thres. The threshold configuration has 8 bits and a resolution of 8mg/LSB. In case the acceleration is above the reference acceleration stored for last position for defined period of time ORIENTCH_CONFIG3.orient_dur; the BMA400 orientation change condition is true. In case the stability check is selected the orientation must be stable within the stability threshold ORIENTCH_CONFIG2.stability thres. The minimum duration of a new orientation (which shall trigger an interrupt) can be configured in the register ORIENTCH_CONFIG3.orient_dur. The duration register has 8 bits and a resolution of 10ms/LSB. The stability evaluation mode can be configured in the Register ORIENTCH_CONFIG0.stability_mode. Following configurations are supported for stability evaluation mode: - stability check disable - Difference to last value from filter acc filt2 - Difference to last value from filter acc_filt_lp | ORIENTCH_CONFIG0.stability_mode | Description | |---------------------------------|--| | p00 | Stability disabled: the stability check is disabled. The orientation change is based only on the difference and duration condition to reference values | | b01 | Last ordinary
acceleration: stability condition evaluated by using the <i>acc_filt2</i> acceleration | | b10 or b11 | Last low-pass filtered acceleration: stability condition evaluated by using the low-pass filtered acceleration data acc_filt_lp | When the duration condition is fulfilled, the reference orientation is updated according to the configuration stored in the Register (ORIENTCH_CONFIG0.orient_refu). The reference update mode supports following modes: - no automatic update at all, the reference orientation will be updated by the user when needed - update with output from filter acc filt2 - update with output from filter acc_filt_lp Summarized, the orientation changed interrupt supports following configuration: - Axis selection for orientation evaluation - Data source for data evaluation - o acc filt2 - acc filt lp - Stability mode configuration - Stability check disabled - Last acceleration from acc_filt2 for stability check BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 53 / Confidential - Last acceleration from acc_filt_lp for stability check - Thresholds - o Threshold for orientation change: 8 bits, 8 mg/lsb resolution - Stability threshold for stable position: 8bits 8 mg/lsb resolution - O Duration for stable orientation: 8bits, 10ms/lsb resolution - Reference update mode: - o no update, the reference orientation will be not updated automatically, it is set by user - update with acc_filt2 value, the reference orientation is updated with current acceleration value as soon the stable orientation is detected - update with acc_filt_lp value, the reference orientation is updated with flowing acceleration values as soon orientation changed detected Page 54 / Confidential #### 4.7. Sensor Self-Test The BMA400 has a comprehensive self test function for the MEMS element by applying electrostatic forces to the sensor core instead of external accelerations. By actually deflecting the seismic mass, the entire signal path of the sensor can be tested. Activating the self-test results in a static offset of the acceleration data; any external acceleration or gravitational force applied to the sensor during active self-test will be observed in the output as a superposition of both acceleration and self-test signal. Before the self-test is enabled the g-range should be set to 4g. In order to ensure a proper interpretation of the self-test signal it is recommended to perform the self-test for both (positive and negative) excitations: SELF_TEST.self_test_sign= b0, b1 and then to calculate the difference of the resulting acceleration values. The table below shows the minimum differences for each axis in order for the self test to pass. The actually measured signal differences can be significantly larger. Self-test: Resulting minimum difference signal for BMA400. | | x-axis signal | y-axis signal | z-axis signal | |--------|---------------|---------------|---------------| | BMA400 | 2000 mg | 1800 mg | 800 mg | It is recommended to perform a reset of the device after a self-test has been performed. If the reset cannot be performed, the following sequence must be kept to prevent unwanted interrupt generation: disable interrupts, change parameters of interrupts, wait for at least 50ms, and enable desired interrupts. The recommended self test procedure is as follows: - 1. Disable all interrupts which could be triggered by self-test activity, this is no hard requirement - 2. Enable accelerometer with OSR=3, normal mode. - 3. Set ±4g range - 4. Set ODR=100Hz, use acc filt1 output - 5. Wait for > 2 ms - 6. Enable self-test for all axes and set <u>positive</u> self-test excitation (SELF_TEST.self_test_sign= 1b0, SELF_TEST.self_test_en_x/y/z = b1) - 7. Wait for > 50ms - 8. Read and store acceleration+ positive excitation values of each axis of interest - 9. Change to negative excitation by setting <u>negative</u> self-test exciation SELF TEST.self test sign= b1 - 10. Wait for > 50ms - 11. Read and store acceleration+negative excitation value of each axis of interest - 12. Calculate difference of measured acceleration values from steps 8 and 11 - 13. Disable self-test for all axes: SELF_TEST.self_test_en_x/y/z = b0, SELF_TEST.self_test_sign= 1b0 - 14. Wait 50ms before re-enabling interrupts By subtracting values with both contain the acceleration part (gravity), what remains is the pseudo-acceleration value caused by the self-test excitations. Page 55 / Confidential #### 4.8. Soft-Reset A softreset can be initiated at any time by writing the command *softreset* (0xB6) to register CMD. The softreset performs a fundamental reset to the device which is largely equivalent to a power cycle. Following a delay, all user configuration settings are overwritten with their default state (setting stored in the NVM) wherever applicable. This command is functional in all operation modes but must not be performed while NVM writing operation is in progress. BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 56 / Confidential ### 5. Register Description #### 5.1. Register Map | Addr
(hex) | RegName | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | Rst
val | Access
mode | |---------------|------------------|------------------|----------------------|-----------|------------------|-------------|--------------|----------------|--------------|------------|----------------| | 0x00 | CHIPID | chipid<7:0> | | | | | | | | | R | | 0x01 | reserved | | | | | erved | | | | 0x88 | R | | 0x02 | ERR REG | | | | | | | cmd err | | 0x00 | R | | 0x03 | STATUS | drdy | | | cmd rdy | | power mod | de<1:0> | int active | 0x00 | R | | 0x04 | ACC X LSB | | | | | x<7:0> | | | | 0x00 | R | | 0x05 | ACC X MSB | 0 | 0 | 0 | 0 | | acc x< | :11:8> | | 0x00 | R | | 0x06 | ACC Y LSB | | | | acc | y<7:0> | | | | 0x00 | R | | | ACC Y MSB | 0 | 0 | 0 | 0 | | acc y< | :11:8> | | 0x00 | R | | 0x08 | ACC Z LSB | | | | | z<7:0> | 400 } | 12.0 | | 0x00 | R | | | ACC Z MSB | 0 | 0 | 0 | 0 | 2 - 1 - 0 - | acc z< | 11.85 | | 0x00 | R | | 0x0A | SENSOR TI | sensor time<7:0> | | | | | | | | 0x00 | R | | 0x0B | SENSOR TI | | | 7 | | time<15:8> | | | | 0x00 | R | | 0x0C | SENSOR TI | | | | | ime<23:16> | | | | 0x00 | R | | 0x0C | EVENT | | | | 3011301 11 | 1116-23:10> | | | por detected | 0x00 | R | | | | | | (f II : 1 | | 0.1. | 4 | | | | | | 0x0E | INT_STAT0 | drdy_int | fwm_int | ffull_int | ieng_
overrun | gen2_int | gen1_int | orientch_int | wkup_int | 0x00 | R | | 0x0F | INT_STAT1 | (0) | | | ieng_
overrun | d_tap_int | s_tap_int | step_i | nt<1:0> | 0x00 | R | | 0x10 | INT_STAT2 | | | | ieng_
overrun | | actch_z_int | actch_y_int | actch_x_int | 0x00 | R | | 0x11 | TEMP DATA | | | | | data<7:0> | | | | 0x00 | R | | | FIFO LENGT | | | | | s_cnt<7:0> | | | | 0x00 | R | | | H0
FIFO LENGT | | fifo bytes cnt<10:8> | | | | | | | | | | | H1 | | | 9 | | | IIIO | _bytes_cnt<10: | 0> | 0x00 | R | | 0x14 | FIFO_DATA | | | <u> </u> | fifo_da | ata<7:0> | <u> </u> | | | 0x00 | R | | 0x15 | STEP_CNT0 | | | | step_ | cnt<7:0> | | | | 0x00 | R | | 0x16 | STEP CNT1 | | | | step c | :nt<15:8> | | | | 0x00 | R | | 0x17 | STEP CNT2 | | //) | | | nt<23:16> | | - * * (| | 0x00 | R | | | STEP_STAT | | | | Step_cl | 11 120.10 | | cton ct | at<1:0> | 0x00 | | | 0x18 | | Clud | osr lp | z1.0> | | * | | | | | R | | 0x19 | ACC_CONFI
G0 | filt1_bw | osr_ip· | <1:0> | 10 | | | power_m | ode<1:0> | 0x00 | RW | | 0x1A | ACC_CONFI
G1 | acc_range | <1:0> | osr<1:0> | > | | acc_odr<3:0> | | | 0x49 | RW | | 0x1B | ACC_CONFI
G2 | | | | | data_s | src_reg | | | 0xE0 | RW | | 0x1F | INT_CONFIG
0 | drdy_int | fwm_int | ffull_int | | gen2_int | gen1_int | orientch_int | - (() | 0x00 | RW | | 0x20 | INT_CONFIG | latch_int | . 8 | 7 | actch_int | d_tap_int | s_tap_int | | step_int | 0x00 | RW | | | | Co | | | C.O. | | Shile | Sil | | | | | | | | | | | | | | | | | Page 57 / Confidential | Ŵ | fwm_int1 fwm_int2 tap_int2 int2_od fifo_y_en uto_lp_timeout akeup_timeout wkup_y_en | | fifo_wat | gen2_int1 gen2_int2 actch_int1 fifo_data_sr_c termark<7:0> eout_thres<11: auto_lp_tin | .4>
neout<1:0>
:4> | orientch_int 1 orientch_int 2 int1_lvl fifo_stop_o n_full watermark<10 gen1_int | wkup_int1 wkup_int2 step_int1 auto_flush 8> fifo_read_en drdy | 0x00 | RW | |-----------------------|--|-------------------------------|--|---|--|--|--|--|----------------------------------| | ifo_z_en | tap_int2 int2_od fifo_y_en uto_lp_timeout | int2_lvl fifo_x_en thres<3:0> | ieng_ove rrun_int2 step_int2 fifo_8bit_ en fifo_wat | actch_int1 fifo_data_sr | tap_int1 int1_od fifo_time_en fifo_ fifo_ 4> neout<1:0> | orientch_int 2 int1_lvl fifo_stop_o n_full watermark<10 | step_int1 auto_flush 8> fifo_read_en | 0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x0 | RW
RW
RW
RW
RW
RW | | ifo_z_en au | int2_od fifo_y_en uto_lp_timeout | fifo_x_en thres<3:0> | fifo_8bit_
en
fifo_wat
auto_lp_time | fifo_data_sr c termark<7:0> eout_thres<11: auto_lp_tin | int1_od fifo_time_en fifo_ 4> neout<1:0> | fifo_stop_o
n_full
watermark<10 |
auto_flush 8> fifo_read_en | 0x00
0x00
0x00
0x00
0x00
0x00
0x00 | RW RW RW RW RW | | au | fifo_y_en uto_lp_timeout | fifo_x_en thres<3:0> | fifo_wat | c termark<7:0> | fifo_time_en fifo_ fifo_ 4> neout<1:0> | fifo_stop_o
n_full
watermark<10 | auto_flush 8> fifo_read_en | 0x00
0x00
0x00
0x00
0x00
0x00 | RW
RW
RW
RW | | au | uto Ip timeout | thres<3:0> | fifo_wat | c termark<7:0> | fifo_
.4>
neout<1:0> | n_full watermark<10 | -8>
fifo_read_en | 0x00
0x00
0x00
0x00
0x00 | RW
RW
RW | | au | uto Ip timeout | thres<3:0> | fifo_wat | c termark<7:0> | fifo_
.4>
neout<1:0> | n_full watermark<10 | -8>
fifo_read_en | 0x00
0x00
0x00
0x00
0x00 | RW
RW
RW | | Ŵ | akeup_timeout | thres<3:0> | fifo_wat | eout_thres<11: auto_lp_tin eout_thres<11: | .4>
neout<1:0>
:4> | watermark<10 | fifo_read_en | 0x00
0x00
0x00 | RW
RW
RW | | Ŵ | akeup_timeout | thres<3:0> | | auto_lp_tin
neout_thres<11 | .4>
neout<1:0>
:4> | | fifo_read_en | 0x00
0x00 | RW
RW | | Ŵ | akeup_timeout | thres<3:0> | | auto_lp_tin
neout_thres<11 | .4>
neout<1:0>
:4> | | fifo_read_en | 0x00
0x00 | RW
RW | | Ŵ | akeup_timeout | thres<3:0> | | auto_lp_tin
neout_thres<11 | neout<1:0>
:4> | gen1_int | | 0x00 | RW | | Ŵ | akeup_timeout | thres<3:0> | | auto_lp_tin
neout_thres<11 | neout<1:0>
:4> | gen1_int | drdy | | | | Ŵ | akeup_timeout | thres<3:0> | wakeup_tim | neout_thres<11 | :4> | gent_int | uluy | | | | | | thres<3:0> | wakeup_tim | | | | | | | | | | | | | | | | 0x00 | RW | | kup_z_en | wkup_y_en | wkup_x_en | | | wkup_timeout | wkup_int | | 0x00 | RW | | | | | nu | ım_of_samples | <2:0> | wkup_r | efu<1:0> | 0x00 | RW | | | | | int_wku | ıp_thres<7:0> | • | | | 0x00 | RW | | .0. | | | int_wku | up_refx<7:0> | | | | 0x00 | RW | | int_wkup_refy<7:0> | | | | | | | | 0x00 | RW | | | | | int_wkı | up_refz<7:0> | | | | 0x00 | RW | | ient_z_en | orient_y_en | orient_x_en | data_src | orient_re | efu<1:0> | stability_r | node<1:0> | 0x00 | RW | | | 70 | | orient | _thres<7:0> | | | | 0x00 | RW | | 0 | 0 | | stability | y_thres<7:0> | | . 0 | | 0x00 | RW | | | , | | orien | t_dur<7:0> | | 110 | | 0x00 | RW | | | | | int_orie | ent_refx<7:0> | | O , | | 0x00 | RW | | int_orient_refx<11:8> | | | | | | | 0x00 | RW | | | | | | int_orie | ent_refy<7:0> | 9 | | -0 | 0x00 | RW | | | | | | -0 | int_orient_r | efy<11:8> | | 0x00 | RW | | | 76 | | | | | | O | 0x00 | RW | | | | | | \bigcirc | int_orient_r | efz<11:8> | | 0x00 | RW | | O | | | 5 | 1196 | ilial | Ø. | | | | | | 5 | ent_z_en orient_y_en | | int_wk int_wk ent_z_en orient_y_en orient_x_en data_src orient stabilit orien int_orie int_orie | int_wkup_refz<7:0> ent_z_en orient_y_en orient_x_en data_src orient_re orient_thres<7:0> stability_thres<7:0> orient_dur<7:0> int_orient_refx<7:0> int_orient_refy<7:0> int_orient_refy<7:0> | int_wkup_refy<7:0> int_wkup_refz<7:0> ent_z_en orient_y_en orient_x_en data_src orient_refu<1:0> orient_thres<7:0> stability_thres<7:0> orient_dur<7:0> int_orient_refx<7:0> int_orient_refy<7:0> int_orient_refy<7:0> | int_wkup_refy<7:0> int_wkup_refz<7:0> ent_z_en orient_y_en orient_x_en data_src orient_refu<1:0> stability_r orient_thres<7:0> stability_thres<7:0> orient_dur<7:0> int_orient_refx<7:0> int_orient_refy<7:0> int_orient_refy<7:0> | int_wkup_refy<7:0> int_wkup_refz<7:0> ent_z_en | int_wkup_refy<7:0> | Page 58 / Confidential | Addr
(hex) | RegName | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | Rst
val | Acces
s | |---------------|---------------------|---------------------------------------|--------------------|----------|----------|------------------------|------------------------|------------------------|------------------------|------------|------------| | 0x3F | GEN1INT_CO
NFIG0 | act_z_en | act_y_en | act_x_en | data_src | act_ref | fu<1:0> | act_hyst | <1:0> | 0x0
0 | RW | | 0x40 | GEN1INT_CO
NFIG1 | | | | | | | criterion_sel | comb_sel | 0x0
0 | RW | | 0x41 | GEN1INT_CO
NFIG2 | | gen_int_thres<7:0> | | | | | | 0x0
0 | RW | | | 0x42 | GEN1INT_CO
NFIG3 | | | _ (| gen_int_ | dur<15:8> | | | | 0x0
0 | RW | | 0x43 | GEN1INT_CO
NFIG3 | | | 76 | gen_int_ | _dur<7:0> | | | | 0x0
0 | RW | | 0x44 | GEN1INT_CO
NFIG4 | | | (O) | int_th_r | efx<7:0> | | | | 0x0
0 | RW | | 0x45 | GEN1INT_CO
NFIG5 | | | | | | int_th_ref | fx<11:8> | | 0x0
0 | RW | | 0x46 | GEN1INT_CO
NFIG6 | | | | int_th_r | efy<7:0> | | | \ | 0x0
0 | RW | | 0x47 | GEN1INT_CO
NFIG7 | | D * | | .·. C | | int_th_ref | y<11:8> | | 0x0
0 | RW | | 0x48 | GEN1INT_CO
NFIG8 | | | | int_th_r | efz<7:0> | 5 | | | 0x0
0 | RW | | 0x49 | GEN1INT_CO
NFIG9 | | | 41 | | | int_th_ref | z<11:8> | | 0x0
0 | RW | | 0x4A | GEN2INT_CO
NFIG0 | act_z_en | act_y_en | act_x_en | data_src | act_ref | fu<1:0> | act_hyst | <1:0> | 0x0
0 | RW | | 0x4B | GEN2INT_CO
NFIG1 | | 2 | | | .0 | 0 | criterion_sel | comb_sel | 0x0
0 | RW | | 0x4C | GEN2INT_CO
NFIG2 | gen_int_thres<7:0> | | | | | 0x0
0 | RW | | | | | 0x4D | GEN2INT_CO
NFIG3 | gen_int_dur<15:8> | | | | | 0x0
0 | RW | | | | | 0x4E | GEN2INT_CO
NFIG3 | 60 | | | gen_int_ | _dur<7:0> | | O | | 0x0
0 | RW | | 0x4F | GEN2INT_CO
NFIG4 | 5 | | | int_th_r | efx<7:0> | | | | 0x0
0 | RW | | 0x50 | GEN2INT_CO
NFIG5 | | | | | | int_th_ref | x<11:8> | | 0x0
0 | RW | | 0x51 | GEN2INT_CO
NFIG6 | | | 110 | int_th_r | efy<7:0> | 6 | | | 0x0
0 | RW | | 0x52 | GEN2INT_CO
NFIG7 | | (| | | | int_th_ref | y<11:8> | | 0x0
0 | RW | | 0x53 | GEN2INT_CO
NFIG8 | | 10 | | int_th_r | efz<7:0> |) | | | 0x0
0 | RW | | 0x54 | GEN2INT_CO
NFIG9 | C. | (0) | | | | int_th_ref | z<11:8> | 0 | 0x0
0 | RW | | 0x55 | ACTH_CONFI
G0 | acth_thres<7:0> | | | | | 0x0
0 | RW | | | | | 0x56 | ACTH_CONFI
G1 | actch_z_en | | | | | 0x0
0 | RW | | | | | 0x57 | TAP_CONFIG | | | | sel_axi | s<1:0> | tap | _sensitivity<2:0> | | 0x0
0 | RW | | 0x58 | TAP_CONFIG1 | quiet_dt<1:0> quiet<1:0> tics_th<1:0> | | | | | 0x0
6 | RW | | | | | 0x7C | IF_CONF | | | | | < | | | spi3 | 0x0
0 | RW | | 0x7D | SELF_TEST | | | | | acc_self_te
st_sign | acc_self_test_
en_z | acc_self_test_
en_y | acc_self_te
st_en_x | 0x0
0 | RW | | 0x7E | CMD | | | | cmd | <7:0> | | | | 0x0
0 | RW | ### Register (0x00) CHIPID DESCRIPTION: the register contains the chip identification code read 0x90 to identify product RESET: 0x90 DEFINITION (Go to register map): | Name | Register (0x00) CHIPID | | | | | | |-------------|------------------------|---|---|---|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | R | R | R | R | | | | Reset Value | 1 | 0 | 0 | 1 | | | | Content | chipid_7_0 | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | R | R | R | R | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | chipid_7_0 | | | | | | Page 60 / Confidential ### Register (0x02) ERR_REG **DESCRIPTION:** reserved RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x02) ERR_REG | | | | | |-------------|-------------------------|------|---------|----------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | n/a | n/a | R | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 7,70 | cmd_err | reserved | | cmd err: command execution failed. This is a clear-on-read bit. cmd_err== 0x1: Command execution failed. ### Register (0x03) STATUS DESCRIPTION: the register contains the sensor status bits RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x03) STATUS | | - * () | | |-------------|------------------------|------------------|---------|------------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | n/a | n/a | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | drdy_stat | reserved | 7 | cmd_rdy | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | power_mode_state | t \ 'O' | int_active | int_active: the int_active bit is set if one of the interrupts is triggered | int_active | | | |------------|---------------|------------------------------------| | 0x00 | not-triggered | one of the interrupts is triggered | | 0x01 | triggered | one of the interrupts is triggered | power_mode_stat: current power mode of the sensor | power_mode_stat | | | |-----------------|----------------|--------------------------| | 0x00 | sleep_mode | device in sleep mode | | 0x01 | low_power_mode | device in low power mode | | 0x02 | normal_mode | device in normal mode | Page 61 / Confidential cmd_rdy: CMD decoder status. | cmd_rdy | | | |---------|-------------|-----------------------| | 0x00 | in_progress | command in progress | | 0x01 | new_command | ready for new command | drdy stat: data ready status is set as soon the accelerometer data conversion is ready | | | • | |-----------|-----------|---| | drdy_stat | | | | 0x00 | not-ready | data conversion not ready | | 0x01 | ready | data conversion not ready, new data available, clear on data read | ### Register (0x04) ACC_X_LSB DESCRIPTION: Register for accelerometer data. The ACC_X_LSB-ACC_Z_MSB registers contain the latest data for x, y and z axis of accelerometer. A read operation on the register ACC_X_LSB-ACC_Z_MSB resets the data ready bit. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x04) | ACC_X_LSB | | | |-------------|-----------------|-----------|-----|---| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | acc_x_7_0 | ''0' | (0) | 4 | | Bit | 3 | 2 | 1 | 0 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | acc_x_7_0 | | | | acc_x_7_0: Isb of accelerometer x-axis data acceleration is obtained by the following
operations: $acc_x/y/z = acc_x/y/z_7_0 + 256*acc_x_11_8$ if(acc_x/y/z> 2047) acc_x/y/z=acc_x/y/z-4096 Page 62 / Confidential #### Register (0x05) ACC_X_MSB DESCRIPTION: Register for accelerometer data. The ACC_X_LSB-ACC_Z_MSB registers contain the latest data for x, y and z axis of accelerometer. A read operation on the register ACC_X_LSB-ACC_Z_MSB resets the data ready bit. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x05) ACC_X_MSB | | | | | | |-------------|---------------------------|-----|-----|-----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | n/a | n/a | n/a | n/a | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | R | R | R | R | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | acc_x_11_8 | | | | | | acc_x_11_8: msb of accelerometer x-axis data acceleration is obtained by the following operations: $acc_x/y/z = acc_x/y/z_7_0 + 256*acc_x_11_8$ if(acc_x/y/z> 2047) acc_x/y/z=acc_x/y/z-4096 ### Register (0x06) ACC_Y_LSB DESCRIPTION: Register for accelerometer data. The ACC_X_LSB-ACC_Z_MSB registers contain the latest data for x, y and z axis of accelerometer. A read operation on the register ACC_X_LSB-ACC_Z_MSB resets the data ready bit. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x06) ACC_Y_LSB | | | | | |-------------|---------------------------|---|-------|---|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | acc_y_7_0 | | *//0, | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | acc_y_7_0 | | | | | acc_y_7_0: Isb of accelerometer y-axis data acceleration is obtained by the following operations: $$acc_x/y/z = acc_x/y/z_7_0 + 256*acc_x_11_8$$ if(acc_x/y/z> 2047) acc_x/y/z=acc_x/y/z-4096 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 63 / Confidential #### Register (0x07) ACC_Y_MSB DESCRIPTION: Register for accelerometer data. The ACC_X_LSB-ACC_Z_MSB registers contain the latest data for x, y and z axis of accelerometer. A read operation on the register ACC_X_LSB-ACC_Z_MSB resets the data ready bit. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x07) ACC_Y_MSB | | | | | | |-------------|---------------------------|-----|-----|-----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | n/a | n/a | n/a | n/a | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | R | R | R | R | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | acc_y_11_8 | | | | | | acc_y_11_8: msb of accelerometer y-axis data acceleration is obtained by the following operations: $acc_x/y/z = acc_x/y/z_7_0 + 256*acc_x_11_8$ if(acc_x/y/z> 2047) acc_x/y/z=acc_x/y/z-4096 ### Register (0x08) ACC_Z_LSB DESCRIPTION: Register for accelerometer data. The ACC_X_LSB-ACC_Z_MSB registers contain the latest data for x, y and z axis of accelerometer. A read operation on the register ACC_X_LSB-ACC_Z_MSB resets the data ready bit. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x08) ACC_Z_LSB | | | | | |-------------|---------------------------|---|-----|---|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | acc_z_7_0 | | X/O | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | acc_z_7_0 | |)' | | | acc_z_7_0: Isb of accelerometer z-axis data acceleration is obtained by the following operations: $acc_x/y/z = acc_x/y/z_7_0 + 256*acc_x_11_8$ if(acc_x/y/z> 2047) acc_x/y/z=acc_x/y/z-4096 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 64 / Confidential #### Register (0x09) ACC_Z_MSB DESCRIPTION: Register for accelerometer data. The ACC_X_LSB-ACC_Z_MSB registers contain the latest data for x, y and z axis of accelerometer. A read operation on the register ACC_X_LSB-ACC_Z_MSB resets the data ready bit. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x09) ACC_Z_MSB | | | | | |-------------|---------------------------|-----|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | acc_z_11_8 | | | | | acc_z_11_8: msb of accelerometer z-axis data acceleration is obtained by the following operations: $acc_x/y/z = acc_x/y/z_7_0 + 256*acc_x_11_8$ if $(acc_x/y/z> 2047)$ acc_x/y/z=acc_x/y/z-4096 ### Register (0x0A) SENSOR_TIME0 DESCRIPTION: the register contains the sensor time RESET: 0x00 **DEFINITION** (Go to register map): | Name | Register (0x0A) SENSOR_TIME0 | | | | | | |-------------|------------------------------|---|------|------|---|--| | Bit | 7 | 6 | -(2) | 5 | 4 | | | Read/Write | R | R | | R | R | | | Reset Value | 0 | 0 | 5 | 0 | 0 | | | Content | sensor_time_7_0 | | | 1.0. | | | | Bit | 3 | 2 | | 1 | 0 | | | Read/Write | R | R | | R | R | | | Reset Value | 0 | 0 | | 0 | 0 | | | Content | sensor_time_7_0 | | | | | | sensor_time_7_0: The internal sensor time is calculated using the formula sensor_time=(sensor_time_7_0 256*sensor_time_15_8+65536*sensor_time_23_16)*312.5us + Page 65 / Confidential #### Register (0x0B) SENSOR_TIME1 DESCRIPTION: the register contains the sensor time RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x0B) SENSOR_TIME1 | | | | | |-------------|------------------------------|---|---|---|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | sensor_time_15_8 | 3 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | sensor_time_15_8 | | | | | sensor_time_15_8: The internal sensor time is calculated using the formula sensor_time=(sensor_time_7_0 256*sensor_time_15_8+65536*sensor_time_23_16)*312.5us ### Register (0x0C) SENSOR_TIME2 DESCRIPTION: the register contains the sensor time RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x0C) | SENSO | R_TIME2 | C | | 70, | |-------------|------------------|-------|---------|---|------|-----| | Bit | 7 | 6 | | 5 | | 4 | | Read/Write | R | R | | R | | R | | Reset Value | 0 | 0 | | 0 | | 0 | | Content | sensor_time_23 | 16 | | | | | | Bit | 3 | 2 | | 1 | 5 | 0 | | Read/Write | R | R | 5 | R | | R | | Reset Value | 0 | 0 | | 0 | 1.0. | 0 | | Content | sensor_time_23_: | 16 | | | | | sensor_time_23_16: The internal sensor time is calculated using the formula sensor_time=(sensor_time_7_0 256*sensor_time_15_8+65536*sensor_time_23_16)*312.5us + Page 66 / Confidential #### Register (0x0D) EVENT DESCRIPTION: the register contains event bits. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x0D) I | Register (0x0D) EVENT | | | | | |-------------|-------------------|-----------------------|-----|--------------|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | n/a | n/a | n/a | n/a | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | 0 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | n/a | n/a | n/a | R | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | (0) | | por_detected | | | por detected: power on reset bit, clear on read | por_detected | | | |--------------|--------------|-----------------------------------| | 0x00 | no-por | no power up or softreset detected | | 0x01 | por-detected | power up or softreset detected | ### Register (0x0E) INT_STAT0 DESCRIPTION: the registers contain the interrupt status bits RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x0E) I | NT_STAT0 | | | |-------------|-------------------|---------------|-------------------|-----------------------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | drdy_int_stat | fwm_int_stat | ffull_int_stat | ieng_overrun_st
at | | Bit | 3 | 2 | 1 | 0 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen2_int_stat | gen1_int_stat | orientch_int_stat | wkup_int_stat | wkup_int_stat: low power wake-up interrupt status: '0' = not set; '1' = set (wake-up condition is valid) orientch_int_stat: orientation changed interrupt status: '0' = not set; '1' = set (orientation is changed) gen1_int_stat: generic interrupt 1 status: '0' = not set; '1' = set gen2_int_stat: generic interrupt 2 status: BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 67 / Confidential '0' = not set; '1' = set ieng overrun stat: issued when interrupt calculation could not be finished ffull_int_stat: FIFO full interrupt status: '0' = not set; '1' = set (FIFO full) fwm_int_stat: FIFO watermark interrupt status: '0' = not set; '1' = set drdy int stat: data ready interrupt is status: '0' = not set; '1' = set ### Register (0x0F) INT_STAT1 DESCRIPTION: the registers contain the interrupt status bits RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x0F) INT_STAT1 | | | | | |-------------|---------------------------|----------------|---------------|-----------------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | | | ieng_overrun_st
at | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | R | R | R | R | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | d_tap_int_stat | s_tap_int_stat | step_int_stat | 7 | | step int stat: step detector interrupt status: '0' = not set; '1' = set (step detected); '2' = set (step detected plus another step); '3' = not used s_tap_int_stat: single tap interrupt status: '0' = not set; '1' = set (single tap detected) d tap int stat: double tap interrupt status: '0' = not set; '1' = set (double tap detected) ieng overrun stat: issued when interrupt calculation could not be finished BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 68 / Confidential #### Register (0x10) INT_STAT2 DESCRIPTION: the registers contain
the interrupt status bits RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x10) II | Register (0x10) INT_STAT2 | | | | | | |-------------|--------------------|---------------------------|------------------|-----------------------|--|--|--| | Bit | 7 | 6 | 5 | 4 | | | | | Read/Write | n/a | n/a | n/a | R | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | reserved | | | ieng_overrun_st
at | | | | | Bit | 3 | 2 | 1 | 0 | | | | | Read/Write | n/a | R | R | R | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | reserved | actch_z_int_stat | actch_y_int_stat | actch_x_int_stat | | | | actch_x_int_stat: x-axis activity change detected: '0' = no change; '1' = changed actch_y_int_stat: y-axis activity change detected: '0' = no change; '1' = changed actch_z_int_stat: z-axis activity change detected: '0' = no change; '1' = changed ieng_overrun_stat: issued when interrupt calculation could not be finished ### Register (0x11) TEMP_DATA DESCRIPTION: the register contains the temperature of the sensor. The output word of the 8-bit temperature sensor is 2's complement. It is valid if the accelerometer is in normal mode. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x11) TEMP_DATA | | | | | | |-------------|---------------------------|---|---|---|------|---| | Bit | 7 | 6 | | 5 | 5 | 4 | | Read/Write | R | R | S | R | | Ř | | Reset Value | 0 | 0 | | 0 | 1.0. | 0 | | Content | temp_data_7_0 | | | | | | | Bit | 3 | 2 | | 1 | 0 | 0 | | Read/Write | R | R | | R | | R | | Reset Value | 0 | 0 | | 0 | | 0 | | Content | temp_data_7_0 | • | | | | | temp_data_7_0: Conversion to real temperature is done using the formula temp=((real)((signed)temp_data))*0.5+23.0 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 69 / Confidential ### Register (0x12) FIFO_LENGTH0 DESCRIPTION: the register contains the number of bytes stored in FIFO RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x12) F | Register (0x12) FIFO_LENGTH0 | | | | | |-------------|--------------------|------------------------------|---|---|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | R | R | R | R | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | fifo_bytes_cnt_7_ | 0 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | R | R | R | R | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | fifo_bytes_cnt_7_0 | | | | | | fifo_bytes_cnt_7_0: This is the LSBs data of the FIFO size count fifo_size_bytes = fifo_bytes_cnt_7_0 + 256*fifo_bytes_cnt_10_8 ### Register (0x13) FIFO_LENGTH1 DESCRIPTION: the register contains the number of bytes stored in FIFO RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x13) F | IFO_LENGTH1 | - X-() | | |-------------|-------------------|-------------------|--------|-----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | n/a | n/a | n/a | n/a | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | | 7, | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | fifo_bytes_cnt_10 | _8 | | fifo_bytes_cnt_10_8: This is the MSBs data of the FIFO size count fifo_size_bytes = fifo_bytes_cnt_7_0 + 256*fifo_bytes_cnt_10_8 Page 70 / Confidential ### Register (0x14) FIFO_DATA DESCRIPTION: the register contains the FIFO data. The FIFO data can be read out as burst read. The number of bytes written in the FIFO to be read is stored in the register FIFO_LENGTH. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x14) F | Register (0x14) FIFO_DATA | | | |-------------|-------------------|---------------------------|---|---| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | fifo_data_field | fifo_data_field | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | fifo_data_field | fifo_data_field | | | ### Register (0x15) STEP_CNT_0 DESCRIPTION: the register contains the number of steps detected by step counter. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x15) S | STEP_CNT_0 | 10 | • | |-------------|-------------------|------------|----|---| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | step_cnt_7_0 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | step_cnt_7_0 | 5 | | | step_cnt_7_0: step_count=step_cnt_7_0+256*step_cnt_15_8+65536*step_cnt_23_16 Page 71 / Confidential #### Register (0x16) STEP_CNT_1 DESCRIPTION: the register contains the number of steps detected by step counter. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x16) STEP_CNT_1 | | | | |-------------|----------------------------|------|---|---| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | step_cnt_15_8 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | step_cnt_15_8 | 4,70 | | | step_cnt_15_8: step_count=step_cnt_7_0+256*step_cnt_15_8+65536*step_cnt_23_16 ### Register (0x17) STEP_CNT_2 DESCRIPTION: the register contains the number of steps detected by step counter. RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x17) S | STEP_CNT_2 | (0) | • | |-------------|-------------------|------------|-----|------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | R | R | R | R XV | | Reset Value | 0 | 0 | 0 | 0 | | Content | step_cnt_23_16 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | R | R | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | step_cnt_23_16 | 5 | | | step_cnt_23_16: step_count=step_cnt_7_0+256*step_cnt_15_8+65536*step_cnt_23_16 Page 72 / Confidential #### Register (0x18) STEP_STAT DESCRIPTION: the register filed contains the status STILL(00), WALK(01) or RUN(01) RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x18) STEP_STAT | | | | |-------------|---------------------------|------------|-----------------|-----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | n/a | n/a | n/a | n/a | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | O ' | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | n/a | R | R | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | | step_stat_field | | | step_stat_field | | | |-----------------|-------------|---------------------------------------| | 0x00 | no-walk-run | no walking, no running | | 0x01 | walking | step counter detects walking activity | | 0x02 | running | step counter detects running activity | ### Register (0x19) ACC_CONFIG0 DESCRIPTION: the registers contain the accelerometer configuration. RESET: 0x00 **DEFINITION** (Go to register map): | Name | Register (0x19) ACC_CONFIG0 | | | | |-------------|-----------------------------|--------|-----------------|----------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | n/a | | Reset Value | 0 | 0 | 0 | 0 | | Content | filt1_bw | osr_lp | | reserved | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | n/a | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | | power_mode_conf | | power_mode_conf: '000' = sleep; '001' = low power mode; '010' = normal mode | power_mode_conf | | | |-----------------|----------------|------------------------------| | 0x00 | sleep_mode | sleep mode | | 0x01 | low_power_mode | low power mode | | 0x02 | normal_mode | normal mode | | 0x03 | reserved | switche sto sleep mode (0x0) | osr_lp: oversampling ratio for low power mode Page 73 / Confidential filt1_bw: bandwidth selector for filt1 output, valid only for ODRs smaller than 100Hz | filt1_bw | | | |----------|------|----------| | 0x00 | high | 0.4x ODR | | 0x01 | low | 0.2x ODR | ## Register (0x1A) ACC_CONFIG1 DESCRIPTION: the registers contain the accelerometer configuration RESET: 0x49 DEFINITION (Go to register map): | Name | Register (0x1A) ACC_CONFIG1 | | | | |-------------|-----------------------------|----|-----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 1 | 0 | 0 | | Content | acc_range | | osr | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 0 | 0 | 1 | | Content | acc_odr | | | | acc_odr: output data rate of accelerometer for acc_filt1 | acc_odr | | | |---------|------------|------| | 0x00 | odr_12p5_5 | 25/2 | | 0x01 | odr_12p5_4 | 25/2 | | 0x02 | odr_12p5_3 | 25/2 | | 0x03 | odr_12p5_2 | 25/2 | | 0x04 | odr_12p5_1 | 25/2 | | 0x05 | odr_12p5 | 25/2 | | 0x06 | odr_25 | 25 | | 0x07 | odr_50 | 50 | | 0x08 | odr_100 | 100 | | 0x09 | odr_200 | 200 | | 0x0a | odr_400 | 400 | | 0x0b | odr_800 | 800 | | 0x0c | odr_800_1 | 800 | | 0x0d | odr_800_2 | 800 | | 0x0e | odr_800_3 | 800 | | 0x0f | odr_800_4 | 800 | osr: oversampling ratio 0/1/2/3 for normal mode osr=0: lowest power, lowest oversampling rate, lowest accuracy osr=3: highest accuracy, higest oversampling rate, highest power BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 74 / Confidential settings 0, 1, 2 and 3 allow linearly trading power versus accuracy(noise) acc range: accelerometer measurement range | | | <u> </u> | |-----------|-----|--------------------------| | acc_range | | | | 0x00 | 2g | +/-2g measurement range | | 0x01 | 4g | +/-4g measurement range | | 0x02 | 8g | +/-8g measurement range | | 0x03 | 16g | +/-16g measurement range | ## Register (0x1B) ACC_CONFIG2 DESCRIPTION: the registers contain the accelerometer configuration RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x1B) ACC_CONFIG2 | | | | | |-------------|-----------------------------|-----|----------|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | data_src_reg | | reserved | | | data_src_reg: Select source for data registers | data_src_reg | | | |--------------|-------------|--| | 0x00 | acc_filt1 | variable ODR
filter | | 0x01 | acc_filt2 | fixed 100Hz output data rate filter | | 0x02 | acc_filt_lp | fixed 100Hz output data rate filter, 1Hz bandwidth | | 0x03 | acc_filt1 | variable ODR filter | ### Register (0x1F) INT_CONFIG0 DESCRIPTION: The register contains interrupt control bits, 0 = not enabled, 1 = enabled RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x1F) INT_CONFIG0 | | | | | |-------------|-----------------------------|------------|--------------|----------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | drdy_int_en | fwm_int_en | ffull_int_en | reserved | | | Bit | 3 | 2 | 1 | 0 | | BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 75 / Confidential | Read/Write | RW | RW | RW | n/a | |-------------|-------------|-------------|-----------------|----------| | Reset Value | 0 | 0 | 0 | 0 | | Content | gen2_int_en | gen1_int_en | orientch_int_en | reserved | orientch_int_en: orientation changed interrupt gen1_int_en: generic interrupt 1 gen2_int_en: generic interrupt 2 ffull_int_en: FIFO full interrupt fwm_int_en: FIFO watermark interrupt drdy int en: data ready interrupt ## Register (0x20) INT_CONFIG1 DESCRIPTION: The register contains interrupt control bits, 0 = not enabled, 1 = enabled RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x20) INT_CONFIG1 | | | | | |-------------|-----------------------------|--------------|----------|--------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | n/a | n/a | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | latch_int | reserved | | actch_int_en | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | n/a | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | d_tap_int_en | s_tap_int_en | reserved | step_int_en | | step_int_en: step detected interrupt (step counter) s_tap_int_en: single tap interrupt d_tap_int_en: double tap interrupt actch_int_en: activity changed interrupt latch_int: latched interrupt mode configuration | latch_int | | | |-----------|----------|------------------| | 0x00 | nolatch | non-latched mode | | 0x01 | latching | latching mode | #### Register (0x21) INT1_MAP DESCRIPTION: The register contains the interrupt to physical INT1 pin mapping 0: interrupt is not mapped to INT11: interrupt is mapped to pin INT1 RESET: 0x00 DEFINITION (Go to register map): Page 76 / Confidential | Name | Register (0x21) II | Register (0x21) INT1_MAP | | | | | |-------------|--------------------|--------------------------|---------------|--------------------|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | drdy_int1 | fwm_int1 | ffull_int1 | ieng_overrun_int 1 | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen2_int1 | gen1_int1 | orientch_int1 | wkup_int1 | | | wkup_int1: low power wake-up interrupt is mapped to int1 orientch int1: orientation changed interrupt is mapped to int1 gen1_int1: generic interrupt 1 is mapped to int1 gen2_int1: generic interrupt 2 is mapped to int1 ieng_overrun_int1: interrupt engine overrun mapped to int1 ffull_int1: fifo full interrupt is mapped to int1 fwm_int1: fifo watermark interrupt is mapped to int1 drdy_int1: data ready interrupt is mapped to int1 #### Register (0x22) INT2_MAP DESCRIPTION: The register contains the interrupt to physical INT2 pin mapping 0: interrupt is not mapped to INT21: interrupt is mapped to pin INT2 RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x22) INT2_MAP | | | | | |-------------|--------------------------|-----------|---------------|--------------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | drdy_int2 | fwm_int2 | ffull_int2 | ieng_overrun_int 2 | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int2 | gen1_int2 | orientch_int2 | wkup_int2 | | wkup_int2: low power wake-up interrupt is mapped to INT2 orientch_int2: orientation changed interrupt is mapped to INT2 gen1_int2: generic interrupt 1 is mapped to INT2 gen2_int2: generic interrupt 2 is mapped to INT2 ieng_overrun_int2: interrupt engine overrun mapped to int2 ffull_int2: fifo full interrupt is mapped to INT2 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 77 / Confidential fwm_int2: fifo watermark interrupt is mapped to INT2 drdy_int2: data ready interrupt is mapped to INT2 #### Register (0x23) INT12_MAP DESCRIPTION: the registers contain the interrupts mapping to physical pins RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x23) INT12_MAP | | | | |-------------|---------------------------|----------|----------|-----------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | n/a | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | actch_int2 | tap_int2 | reserved | step_int2 | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | n/a | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | actch_int1 | tap_int1 | reserved | step_int1 | step int1: step detector interrupt is mapped to INT1 | step_int1 | | | |-----------|----------------|------------------------------| | 0x00 | nomap | interrupt not mapped to INT1 | | 0x01 | mapped to INT1 | interrupt mapped to INT1 | tap_int1: tap sensing interrupt is mapped to INT1 | tap_int1 | | | |----------|----------------|------------------------------| | 0x00 | nomap | interrupt not mapped to INT1 | | 0x01 | mapped to INT1 | interrupt mapped to INT1 | actch int1: activity changed interrupt is mapped to INT1 | actch_int1 | | | |------------|----------------|------------------------------| | 0x00 | nomap | interrupt not mapped to INT1 | | 0x01 | mapped to INT1 | interrupt mapped to INT1 | step_int2: step detector interrupt is mapped to INT2 | step_int2 | | 4 | |-----------|----------------|------------------------------| | 0x00 | nomap | interrupt not mapped to INT2 | | 0x01 | mapped to INT2 | interrupt mapped to INT2 | tap int2: tap sensing interrupt is mapped to INT2 | tap_int2 | | | |----------|----------------|------------------------------| | 0x00 | nomap | interrupt not mapped to INT2 | | 0x01 | mapped to INT2 | interrupt mapped to INT2 | actch_int2: activity changed interrupt is mapped to INT2 BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 78 / Confidential | actch_int2 | | | |------------|----------------|------------------------------| | 0x00 | nomap | interrupt not mapped to INT2 | | 0x01 | mapped to INT2 | interrupt mapped to INT2 | ## Register (0x24) INT12_IO_CTRL DESCRIPTION: the register contains physical behaviour of interrupt pins configurations RESET: 0x22 DEFINITION (Go to register map): | Name | Register (0x24) INT12_IO_CTRL | | | | |-------------|-------------------------------|---------|----------|----------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | n/a | RW | RW | n/a | | Reset Value | 0 | 0 | 1 | 0 | | Content | reserved | int2_od | int2_lvl | reserved | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | RW | RW | n/a | | Reset Value | 0 | 0 | 1 | 0 | | Content | reserved | int1_od | int1_lvl | reserved | int1_lvl: INT1 pin output level | int1_lvl | C | | |----------|----------------|--------------------------------| | 0x00 | low-act-reset | interrupt pin INT1 low-active | | 0x01 | high-act-reset | interrupt pin INT1 high-active | int1_od: INT1 pin output driver mode: CMOS or open drain | int1_od | | | |---------|------------|-------------------------------------| | 0x00 | pushpull | CMOS push-pull drive characteristic | | 0x01 | open drain | | int2_lvl: INT2 pin output level | int2_lvl | | | |----------|----------------|--------------------------------| | 0x00 | low-act-reset | interrupt pin INT2 low-active | | 0x01 | high-act-reset | interrupt pin INT2 high-active | int2_od: INT2 pin output driver mode: see interrupt physical behaviour | int2_od | | * 0 | |---------|------------|-------------------------------------| | 0x00 | pushpull | CMOS push-pull drive characteristic | | 0x01 | open drain | | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 79 / Confidential #### Register (0x26) FIFO_CONFIG0 DESCRIPTION: the registers contain the FIFO control and FIFO configuration settings RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x26) F | Register (0x26) FIFO_CONFIG0 | | | | | |-------------|-------------------|------------------------------|-------------------|--------------|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | fifo_z_en | fifo_y_en | fifo_x_en | fifo_8bit_en | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | fifo_data_src | fifo_time_en | fifo_stop_on_full | auto_flush | | | auto flush: auto flush FIFO when changing power-mode | | | 0.01 | | | |------------|------------|--------------------------------------|--|--| | auto_flush | | | | | | 0x00 | noaction | no FIFO flush on changing power mode | | | | 0x01 | fifo-flush | FIFO flush on changing power mode | | | fifo_stop_on_full: FIFO writing - stream mode / FIFO full mode | fifo_stop_on_full | | | |-------------------|-------------------|---| | 0x00
 streaming | overwrite oldest FIFO data when FIFO full | | 0x01 | fifo-stop-on-full | stop writing into FIFO when full | fifo_time_en: Enable sending of sensortime frame when reading burst from FIFO and the FIFO runs empty fifo_data_src: acceleration data source for storing into FIFO | fifo_data_src | | | | | |---------------|-----------|----------------------|------------------------------------|---| | 0x00 | acc_filt1 | store data from acc_ | filt1 (variable data rate) in FIFC |) | | 0x01 | acc_filt2 | store data from acc | filt2 (100Hz data rate) in FIFO | | fifo_8bit_en: enables 8 bit FIFO mode | fifo_8bit_en |) | | |--------------|-------|--------------------------------------| | 0x00 | 12bit | store data in 12bit format (default) | | 0x01 | 8bit | store data in 8bit format | fifo x en: x-channel data storage control | me_x_cm x chamier data storage control | | | | | | |--|---------|--------------------------|--|--|--| | fifo_x_en | | | | | | | 0x00 | nostore | do not store x axis data | | | | | 0x01 | store | store x axis data | | | | Page 80 / Confidential fifo_y_en: y-channel data storage control | fifo_y_en | | J | |-----------|---------|--------------------------| | 0x00 | nostore | do not store y axis data | | 0x01 | store | store y axis data | fifo z en: z-channel data storage control | fifo_z_en | | 1 | |-----------|---------|--------------------------| | 0x00 | nostore | do not store z axis data | | 0x01 | store | store z axis data | ### Register (0x27) FIFO_CONFIG1 DESCRIPTION: the registers contain the FIFO control and FIFO configuration settings RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x27) FIFO_CONFIG1 | | | | | |-------------|------------------------------|----|-----|------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | fifo_watermark_7 | 0 | . (| | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | fifo_watermark_7 | 0 | | 7(0) | | fifo_watermark_7_0: lsb of fifo watermark threshold configuration: watermark[byte]= fifo_watermark_7_0 + 256*fifo_watermark_10_8 ### Register (0x28) FIFO_CONFIG2 DESCRIPTION: the registers contain the FIFO control and FIFO configuration settings RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x28) FIFO_CONFIG2 | | | | |-------------|------------------------------|---------------------|-----|-----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | n/a | n/a | n/a | n/a | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | fifo_watermark_10_8 | | | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 81 / Confidential fifo_watermark_10_8: msb of fifo watermark threshold configuration watermark[byte]= fifo_watermark_7_0 + 256*fifo_watermark_10_8 #### Register (0x29) FIFO_PWR_CONFIG DESCRIPTION: the registers contain the FIFO read power circuit settings, saves 100nA when set RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x29) FIFO_PWR_CONFIG | | | | | |-------------|---------------------------------|-------------|-------------|------------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | reserved | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | n/a | n/a | n/a | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | | 1 00 | fifo_read_disabl | | | | 20 | > | | е | | fifo_read_disable: manual disable for the FIFO read power circuit when set HIGH ## Register (0x2A) AUTOLOWPOW_0 DESCRIPTION: the registers contain configurations for auto-low-power condition RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x2A) AUTOLOWPOW_0 | | | | | |-------------|------------------------------|-----------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | auto_lp_timeout_t | hres_11_4 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | auto_lp_timeout_thres_11_4 | | | | | auto_lp_timeout_thres_11_4: msb of auto-low-power timeout threshold timeout = auto_lp_timeout_thres_3_0 +16*auto_lp_timeout_thres_11_4 BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 82 / Confidential #### Register (0x2B) AUTOLOWPOW_1 DESCRIPTION: the registers contain configurations for auto-low-power condition RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x2B) | Register (0x2B) AUTOLOWPOW_1 | | | |-------------|-------------------|------------------------------|----------|-----------------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | auto_lp_timeout_t | auto_lp_timeout_thres_3_0 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | auto_lp_timeout | dio | gen1_int | drdy_lowpow_tri | drdy_lowpow_trig: data ready as source for auto-low-power condition | drdy_lowpow_trig | | | |------------------|--------------|--| | 0x00 | notrig | no triggering of low-power | | 0x01 | trig-newdata | new data ready triggers going into low-power | gen1_int: generic interrupt 1 as source for auto-low-power condition | gen1_int | | | |----------|-----------|---| | 0x00 | nodtrig | no triggering of low-power | | 0x01 | trig-gen1 | generic interrupt 1 triggers going into low-power | auto_lp_timeout: auto-low-power timeout as source for auto-low-power condition | auto_lp_timeout | | | |-----------------|-------------------|--| | 0x00 | auto_lp_timeout_0 | Low-power timeout disabled | | 0x01 | auto_lp_timeout_1 | Low-power timeout active, device shall switch into low power mode as soon timeout counter is expired | | 0x02 | auto_lp_timeout_2 | Low-power timeout active, as 01b, but timeout counter resets if gen2_int is asserted | | 0x03 | auto_lp_timeout_3 | same as 10b | auto_lp_timeout_thres_3_0: lsb of auto-low-power timeout threshold timeout = auto_lp_timeout_thres_3_0 +16*auto_lp_timeout_thres_11_4 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 83 / Confidential ### Register (0x2C) AUTOWAKEUP_0 DESCRIPTION: the register contains configurations for auto-wake-up condition. The auto-wake-up condition is evaluated as soon as the sensor changes into low power mode RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x2C) | Register (0x2C) AUTOWAKEUP_0 | | | |-------------|-----------------|------------------------------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | wakeup_timeout_ | wakeup timeout thres 11_4 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | wakeup_timeout_ | wakeup_timeout_thres_11_4 | | | wakeup_timeout_thres_11_4: msb of wake-up timeout threshold timeout= wakeup_timeout_thres_3_0 + 16*wakeup_timeout_thres_11_4 ### Register (0x2D) AUTOWAKEUP_1 DESCRIPTION: the register contains configurations for auto-wake-up condition. The auto-wake-up condition is evaluated as soon as the sensor changes into low power mode RESET: 0x00 **DEFINITION** (Go to register map): | Name | Register (0x2D) AUTOWAKEUP_1 | | | | |-------------|------------------------------|--------------------------|----------|----------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | wakeup_timeout_t | wakeup_timeout_thres_3_0 | | | | Bit | 3 | 2 | 1 |) Ö | | Read/Write | n/a | RW | RW | n/a | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | wkup_timeout | wkup_int | reserved | wkup_int: low power wake-up interrupt | wkup_int | | ., | |----------|-----------|---------------------------| | 0x00 | nowakeup | disable wake-up interrupt | | 0x01 | en-wakeup | enable wake-up interrupt | wkup timeout: wake-up timeout as source for auto-wake-up condition | wkup_timeout | | | |--------------|--------------|----------------------------| | 0x00 | no-timeout | timer not used for wake-up | | 0x01 | enab-timeout | timer triggers wake-up | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 84 / Confidential wakeup_timeout_thres_3_0: lsb of wake-up timeout threshold timeout= wakeup_timeout_thres_3_0 + 16*wakeup_timeout_thres_11_4 ### Register (0x2F) WKUP_INT_CONFIG0 DESCRIPTION: the registers contain configurations for wake-up interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x2F) WKUP_INT_CONFIG0 | | | | |-------------|----------------------------------|-----------|-----------|---------------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | wkup_z_en | wkup_y_en | wkup_x_en | num_of_sample | | | | | | S | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | num_of_samples | | wkup_refu | | #### wkup_refu: wake-up interrupt reference update mode | wkup_refu | C | | |-----------|-----------|---| | 0x00 | manual | manual update (reference registers are updated by external MCU) | | 0x01 | onetime | one time automated update before going into low power mode | | 0x02 | everytime | every time after data conversion | num_of_samples: number of
samples for interrupt condition evaluation, allowed range 1..8 wkup x en: enable low power wake-up interrupt for x channel | wkup_x_en | | | |-----------|----------|----------------------------------| | 0x00 | disabled | no x axis evaluation | | 0x01 | enabled | wakeup function evaluates x axis | #### wkup_y_en: enable low power wake-up interrupt for y channel | wkup_y_en | | | |-----------|----------|----------------------------------| | 0x00 | disabled | no y axis evaluation | | 0x01 | enabled | wakeup function evaluates y axis | #### wkup z en: enable low power wake-up interrupt for z channel | wkup_z_en | | | |-----------|----------|----------------------------------| | 0x00 | disabled | no z axis evaluation | | 0x01 | enabled | wakeup function evaluates z axis | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 85 / Confidential ### Register (0x30) WKUP_INT_CONFIG1 DESCRIPTION: the register contains configurations for wake-up interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x30) V | Register (0x30) WKUP_INT_CONFIG1 | | | | | |-------------|-------------------|----------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_wkup_thres | 0 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_wkup_thres | (0) | | | | | int_wkup_thres: interrupt threshold, unsigned integer the value defines the amount of activity which must be present to cause wake-up. ### Register (0x31) WKUP_INT_CONFIG2 DESCRIPTION: the register contains configurations for wake-up interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x31) V | Register (0x31) WKUP_INT_CONFIG2 | | | | | | |-------------|-------------------|----------------------------------|-------|----|--|--|--| | Bit | 7 | 6 | 5 | 4 | | | | | Read/Write | RW | RW | RW | RW | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | int_wkup_refx | 0 | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | | Read/Write | RW | RW | RW | RW | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | int_wkup_refx | | . (2) | | | | | int_wkup_refx: reference acceleration x-axis for the wake-up interrupt the value is a signed integer, either provided by the host (wkup_refu=0) or automatically the wake-up interrupt calculates abs(acc_x/y/z-int_wkup_refx/y/z)>int_wkup_thres to determine whether activity is sufficiently high on the x/y/z-axis to cause wake-up BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 86 / Confidential #### Register (0x32) WKUP_INT_CONFIG3 DESCRIPTION: the register contains configurations for wake-up interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x32) V | Register (0x32) WKUP_INT_CONFIG3 | | | | | |-------------|-------------------|----------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | nt_wkup_refy | nt wkup refy | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | nt_wkup_refy | (0) | | | | | nt_wkup_refy: reference acceleration y-axis for the wake-up interrupt the value is a signed integer, either provided by the host (wkup_refu=0) or automatically the wake-up interrupt calculates abs(acc_x/y/z-int_wkup_refx/y/z)>int_wkup_thres to determine whether activity is sufficiently high on the x/y/z-axis to cause wake-up ### Register (0x33) WKUP_INT_CONFIG4 DESCRIPTION: the register contains configurations for wake-up interrupt RESET: 0x00 **DEFINITION** (Go to register map): | Name | Register (0x33) WKUP_INT_CONFIG4 | | | | | | |-------------|----------------------------------|-----|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_wkup_refz | 201 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_wkup_refz | | | | | | int_wkup_refz: reference acceleration z-axis for the wake-up interrupt the value is a signed integer, either provided by the host (wkup_refu=0) or automatically the wake-up interrupt calculates abs(acc_x/y/z-int_wkup_refx/y/z)>int_wkup_thres to determine whether activity is sufficiently high on the x/y/z-axis to cause wake-up BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 87 / Confidential ### Register (0x35) ORIENTCH_CONFIG0 DESCRIPTION: the registers contain configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x35) ORIENTCH_CONFIG0 | | | | | |-------------|----------------------------------|-------------|----------------|-----------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | orient_z_en | orient_y_en | orient_x_en | orient_data_src | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | orient_refu | (10 | stability_mode | | | stability mode: stability mode for new orientation | stability_mode | | | |----------------|----------|--| | 0x00 | inactive | not active | | 0x01 | enabled1 | ordinary acceleration, data used used for stability check: "acc_filt2" | | 0x02 | enabled2 | low pass filtered acceleration used for stability check | orient refu: reference update mode for orientation changed interrupt | | | 3 | |-------------|------------|---| | orient_refu | | | | 0x00 | manual | manual update (reference registers are updated by external MCU) | | 0x01 | onetime_2 | one time automated update using acc_filt2 data | | 0x02 | onetime_lp | one time automated update using acc_filt_lp data | orient_data_src: data source selection for orientation changed interrupt evaluation | orient_data_src | | | |-----------------|---------|----------------------------| | 0x00 | filt2 | data source is acc_filt2 | | 0x01 | filt_lp | data source is acc_filt_lp | orient_x_en: enable orientation changed interrupt for x-axis: 0-not active;1-active orient_y_en: enable orientation changed interrupt for y-axis: 0-not active;1-active orient_z_en: enable orientation changed interrupt for z-axis: 0-not active;1-active BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 88 / Confidential #### Register (0x36) ORIENTCH_CONFIG1 DESCRIPTION: threshold configuration for orientation changed interrupt 8mg/lsb resolution RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x36) (| Register (0x36) ORIENTCH_CONFIG1 | | | | | |-------------|-------------------|----------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | orient_thres | orient thres | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | orient_thres | | | | | | orient thres: threshold configuration for orientation changed interrupt 8mg/lsb resolution ### Register (0x37) ORIENTCH_CONFIG2 DESCRIPTION: stability threshold used for the stability evaluation of the new orientation 8mg/lsb resolution RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x37) (| Register (0x37) ORIENTCH_CONFIG2 | | | | | | |-------------|-------------------|----------------------------------|------|----|--|--|--| | Bit | 7 | 6 | 5 | 4 | | | | | Read/Write | RW | RW | RW | RW | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | stability_thres | | 7 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | | Read/Write | RW | RW | RW | RW | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | stability_thres | | 1.0. | | | | | stability_thres: stability threshold used for the stability evaluation of the new orientation 8mg/lsb resolution Page 89 / Confidential #### Register (0x38) ORIENTCH_CONFIG3 DESCRIPTION: duration for (stable) new orientation before interrupt is triggered RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x38) C | Register (0x38) ORIENTCH_CONFIG3 | | | | | |-------------|-------------------|----------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | orient_dur | orient dur | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | orient_dur | | | | | | orient_dur: duration for (stable) new orientation before interrupt is triggered duration is a multiple of the number of data samples processed (ODR=100HZ) from the selected filter ### Register (0x39) ORIENTCH_CONFIG4 DESCRIPTION: the register contains configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x39) ORIENTCH_CONFIG4 | | | | | | |-------------|----------------------------------|----|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refx_7_ | 0 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refx_7_ | 0 | | | | | int_orient_refx_7_0: Isb of x-axis reference for orientation change evaluation the value is a signed integer, either provided by the host (orient_refu=0) or automatically the interrupt calculates abs(acc_x/y/z-int_orientch_refx/y/z)>orient_thres to determine whether activity is sufficiently high on the x/y/z-axis to cause an interrupt trigger int_orientch_refx = int_orient_refx_7_0 + 256*int_orient_refx_11_8 Page 90 / Confidential #### Register (0x3A) ORIENTCH_CONFIG5 DESCRIPTION: the register contains
configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x3A) ORIENTCH_CONFIG5 | | | | | |-------------|----------------------------------|----------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | reserved | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | int_orient_refx_11_8 | | | | | int orient refx 11 8: msb of x-axis reference for orientation change evaluation #### Register (0x3B) ORIENTCH_CONFIG6 DESCRIPTION: the register contains configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x3B) | Register (0x3B) ORIENTCH_CONFIG6 | | | | | |-------------|--------------------|----------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refy_7 | 0 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refy_7_ | 0 | | | | | int_orient_refy_7_0: Isb of y-axis reference for orientation change evaluation Isb of y-axis reference for orientation change evaluation the value is a signed integer, either provided by the host (orient_refu=0) or automatically the interrupt calculates abs(acc_x/y/z-int_orientch_refx/y/z)>orient_thres to determine whether activity is sufficiently high on the x/y/z-axis to cause an interrupt trigger int_orientch_refy = int_orient_refy_7_0 + 256*int_orient_refy_11_8 Page 91 / Confidential #### Register (0x3C) ORIENTCH_CONFIG7 DESCRIPTION: the register contains configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x3C) ORIENTCH_CONFIG7 | | | | | | |-------------|----------------------------------|----------|-----|-----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | n/a | n/a | n/a | n/a | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | reserved | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refy_11_8 | | | | | | int orient refy 11 8: msb of y-axis reference for orientation change evaluation #### Register (0x3D) ORIENTCH_CONFIG8 DESCRIPTION: the registers contain configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x3D) | Register (0x3D) ORIENTCH_CONFIG8 | | | | | |-------------|--------------------|----------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refz_7 | 0 | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | int_orient_refz_7_ | 0 | | | | | int_orient_refz_7_0: Isb of z-axis reference for orientation change evaluation Isb of z-axis reference for orientation change evaluation the value is a signed integer, either provided by the host (orient_refu=0) or automatically the interrupt calculates abs(acc_x/y/z-int_orientch_refx/y/z)>orient_thres to determine whether activity is sufficiently high on the x/y/z-axis to cause an interrupt trigger int_orientch_refz = int_orient_refz_7_0 + 256*int_orient_refz_11_8 Page 92 / Confidential #### Register (0x3E) ORIENTCH_CONFIG9 DESCRIPTION: the registers contain configurations for orientation changed interrupt RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x3E) (| Register (0x3E) ORIENTCH_CONFIG9 | | | | |-------------|--------------------|----------------------------------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 0' | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | int_orient_refz_11 | _8 | | | | int_orient_refz_11_8: msb of z-axis reference for orientation change evaluation ### Register (0x3F) GEN1INT_CONFIG0 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x3F) (| Register (0x3F) GEN1INT_CONFIG0 | | | | | |-------------|-------------------|---------------------------------|---------------|---------------|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen1_act_z_en | gen1_act_y_en | gen1_act_x_en | gen1_data_src | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen1_act_refu | | gen1_act_hyst | | | | #### gen1 act hyst: hysteresis configuration for interrupt evaluation | gen1_act_hyst | | | |---------------|------------|-----------------| | 0x00 | not-active | no hysteresis | | 0x01 | 24mg | 24mg hysteresis | | 0x02 | 48mg | 48mg hysteresis | | 0x03 | 96mg | 96mg hysteresis | #### gen1 act refu: reference update mode for evaluation | gen1_act_refu | - | | |---------------|-----------|---| | 0x00 | manual | manual update (reference registers are updated by external MCU) | | 0x01 | onetime | one time automated update by the selected data source | | 0x02 | everytime | every time automated update by the selected data source | BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 93 / Confidential | 0x03 | everytime lp | every time automated update by acc filt lp | |------|--------------|--| | | · · · · | · · · · · · · · · · · · · · · · · · · | gen1 data src: data source selection for interrupts evaluation | gen1_data_src | | | |---------------|-------|--------------------------| | 0x00 | filt1 | data source is acc_filt1 | | 0x01 | filt2 | data source is acc filt2 | gen1_act_x_en: x-axis channel control for interrupt evaluation: '0' - not active; '1' - active gen1_act_y_en: y-axis channel control for interrupt evaluation: '0' - not active; '1' - active gen1_act_z_en: z-axis channel control for interrupt evaluation: '0' - not active; '1' - active #### Register (0x40) GEN1INT_CONFIG1 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x40) GEN1INT_CONFIG1 | | | | | |-------------|---------------------------------|-----|------------------------|---------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 70 | . (| | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | n/a | n/a | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 10 | gen1_criterion_s
el | gen1_comb_sel | | gen1_comb_sel: Select logical combination for creating the interrupt signal from the individual axes that have been enabled | gen1_comb_sel | | | |---------------|-----|--| | 0x00 | OR | OR combination of x/y/z axis evaluation results | | 0x01 | AND | AND combination of x/y/z axis evaluation results | gen1 criterion sel: Select criterion for threshold comparison | gen1_criterion_sel | | | |--------------------|------------|--| | 0x00 | inactivity | acceleration below threshold: inactivity detection | | 0x01 | activity | acceleration above threshold: inactivity detection | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 94 / Confidential #### Register (0x41) GEN1INT_CONFIG2 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x41) GEN1INT_CONFIG2 | | | | | |-------------|---------------------------------|----------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_thres | gen1 int thres | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_thres | 7.0 | | | | gen1_int_thres: threshold configuration for detection: 8 mg/lsb unsigned integer ### Register (0x42) GEN1INT_CONFIG3 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x42) GEN1INT_CONFIG3 | | | | | |-------------|---------------------------------|----|------|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_dur_15_ | 8 | 7, | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_dur_15_ | 8 | 1.0. | | | gen1_int_dur_15_8: duration for which the condition has to persist until interrupt can be triggered duration is measured in data samples of selected data source gen1_int_dur= 256*gen1_int_dur_15_8 + gen1_int_dur_7_0 Page 95 / Confidential #### Register (0x43) GEN1INT_CONFIG31 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x43) 0 | Register (0x43) GEN1INT_CONFIG31 | | | | |-------------|-------------------|----------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_dur_7_0 | gen1_int_dur_7_0 | | | | | Bit | 3 | 2
| 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_dur_7_0 | | | | | gen1_int_dur_7_0: duration for which the condition has to persist until interrupt can be triggered duration is measured in data samples of selected data source gen1_int_dur= 256*gen1_int_dur_15_8 + gen1_int_dur_7_0 ### Register (0x44) GEN1INT_CONFIG4 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x44) (| GEN1INT_CONFIG | 4 | 70) | |-------------|-------------------|----------------|----|-----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen1_int_th_refx_ | 7_0 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen1_int_th_refx_ | 7_0 | | | gen1_int_th_refx_7_0: lsb of reference x-axis value for evaluation gen1_int_refx = gen1_int_th_refx_7_0 + 256*gen1_int_th_refx_11_8 Page 96 / Confidential #### Register (0x45) GEN1INT_CONFIG5 DESCRIPTION: the register contains configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x45) GEN1INT_CONFIG5 | | | | | |-------------|---------------------------------|------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 9 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_th_refx_ | 11_8 | | | | gen1_int_th_refx_11_8: msb of reference x-axis value for evaluation gen1_int_refx = gen1_int_th_refx_7_0 + 256*gen1_int_th_refx_11_8 #### Register (0x46) GEN1INT_CONFIG6 DESCRIPTION: the register contains configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x46) (| GEN1INT_CONFIG | 6 | | |-------------|-------------------|----------------|------|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen1_int_th_refy_ | 7_0 | 7) | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen1_int_th_refy_ | 7_0 | 1.0. | _ | gen1_int_th_refy_7_0: lsb of reference y-axis value for evaluation gen1_int_refy = gen1_int_th_refy_7_0 + 256*gen1_int_th_refy_11_8 Page 97 / Confidential #### Register (0x47) GEN1INT_CONFIG7 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x47) GEN1INT_CONFIG7 | | | | | |-------------|---------------------------------|------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 9 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_th_refy_ | 11_8 | | | | gen1_int_th_refy_11_8: msb of reference y-axis value for evaluation gen1_int_refy = gen1_int_th_refy_7_0 + 256*gen1_int_th_refx_11_8 #### Register (0x48) GEN1INT_CONFIG8 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x48) 0 | SEN1INT_CONFIG | 8 | | |-------------|-------------------|----------------|-------|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen1_int_th_refz_ | 7_0 | 7, | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen1_int_th_refz_ | 7_0 | \ '0' | | gen1_int_th_refz_7_0: lsb of reference z-axis value for evaluation gen1_int_refz = gen1_int_th_refz_7_0 + 256*gen1_int_th_refz_11_8 Page 98 / Confidential #### Register (0x49) GEN1INT_CONFIG9 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x49) GEN1INT_CONFIG9 | | | | | |-------------|---------------------------------|------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 9 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen1_int_th_refz_ | 11_8 | | | | gen1_int_th_refz_11_8: msb of reference z-axis value for evaluation gen1_int_refz = gen1_int_th_refz_7_0 + 256*gen1_int_th_refz_11_8 ### Register (0x4A) GEN2INT_CONFIG0 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x4A) | Register (0x4A) GEN2INT_CONFIG0 | | | | | |-------------|-----------------|---------------------------------|---------------|---------------|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen2_act_z_en | gen2_act_y_en | gen2_act_x_en | gen2_data_src | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen2_act_refu | | gen2_act_hyst | | | | gen2_act_hyst: hysteresis configuration for interrupt evaluation | gen2_act_hyst | | | |---------------|------------|-----------------| | 0x00 | not-active | no hysteresis | | 0x01 | 24mg | 24mg hysteresis | | 0x02 | 48mg | 48mg hysteresis | | 0x03 | 96mg | 96mg hysteresis | Page 99 / Confidential gen2 act refu: reference update mode for evaluation | gen2_act_refu | | | |---------------|--------------|---| | 0x00 | manual | manual update (reference registers are updated by external MCU) | | 0x01 | onetime | one time automated update by the selected data source | | 0x02 | everytime | every time automated update by the selected data source | | 0x03 | everytime_lp | every time automated update by acc_filt_lp | gen2_data_src: data source selection for interrupts evaluation | gen2_data_src | | | |---------------|-------|--------------------------| | 0x00 | filt1 | data source is acc_filt1 | | 0x01 | filt2 | data source is acc_filt2 | gen2_act_x_en: x-axis channel control for interrupt evaluation: 0 - not active; 1 - active gen2_act_y_en: y-axis channel control for interrupt evaluation: 0 - not active; 1 - active gen2 act z en: z-axis channel control for interrupt evaluation: 0 - not active; 1 - active #### Register (0x4B) GEN2INT_CONFIG1 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x4B) | Register (0x4B) GEN2INT_CONFIG1 | | | | | |-------------|-----------------|---------------------------------|------------------------|---------------|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | n/a | n/a | n/a | n/a | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | n/a | n/a | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | 5 | gen2_criterion_s
el | gen2_comb_sel | | | gen2_comb_sel: Select logical combination for creating the interrupt signal from the individual axes that have been enabled | gen2_comb_sel | | . (2) | |---------------|-----|--| | 0x00 | OR | OR combination of x/y/z axis evaluation results | | 0x01 | AND | AND combination of x/y/z axis evaluation results | gen2_criterion_sel: Select criterion for threshold comparison | gen2_criterion_sel | | | |--------------------|------------|--| | 0x00 | inactivity | acceleration below threshold: inactivity detection | | 0x01 | activity | acceleration above threshold: inactivity detection | BST-BMA400-DS000-00 | Version 0.1 | November 2017 [©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Page 100 / Confidential #### Register (0x4C) GEN2INT_CONFIG2 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x4C) | Register (0x4C) GEN2INT_CONFIG2 | | | | | |-------------|-----------------|---------------------------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen2_int_thres | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen2_int_thres | | | | | | gen2_int_thres: threshold configuration for interrupt detection: 8 mg/lsb unsigned integer ### Register (0x4D) GEN2INT_CONFIG3 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 **DEFINITION** (Go to register map): | Name | Register (0x4D) GEN2INT_CONFIG3 | | | | | |-------------|---------------------------------|----|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_dur_15_ | 8 | .0 | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_dur_15_ | 8 | | | | gen2_int_dur_15_8: duration for which the condition has to persist until interrupt can be triggered duration is measured in data samples of selected data source gen2_int_dur= 256*gen2_int_dur_15_8 + gen2_int_dur_7_0 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 101 / Confidential #### Register (0x4E) GEN2INT_CONFIG31 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to
register map): | Name | Register (0x4E) GEN2INT_CONFIG31 | | | | | |-------------|----------------------------------|----|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_dur_7_0 | 9 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_dur_7_0 | | | | | gen2_int_dur_7_0: duration for which the condition has to persist until interrupt can be triggered duration is measured in data samples of selected data source gen2_int_dur= 256*gen2_int_dur_15_8 + gen2_int_dur_7_0 ### Register (0x4F) GEN2INT_CONFIG4 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x4F) (| GEN2INT_CONFIG | 4 | 70, | |-------------|-------------------|----------------|----|-----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen2_int_th_refx_ | 7_0 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | gen2_int_th_refx_ | 7_0 | | | gen2_int_th_refx_7_0: Isb of reference x-axis value for evaluation Isb of reference x-axis value for evaluation gen2_int_refx = gen2_int_th_refx_7_0 + 256*gen2_int_th_refx_11_8 Page 102 / Confidential #### Register (0x50) GEN2INT_CONFIG5 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x50) GEN2INT_CONFIG5 | | | | | | |-------------|---------------------------------|----------|-----|-----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | n/a | n/a | n/a | n/a | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | reserved | reserved | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | gen2_int_th_refx_11_8 | | | | | | #### Register (0x51) GEN2INT_CONFIG6 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x51) GEN2INT_CONFIG6 | | | | | |-------------|---------------------------------|-----|------|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_th_refy_ | 7_0 | 7, | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_th_refy_ | 7_0 | 7.0. | | | Page 103 / Confidential #### Register (0x52) GEN2INT_CONFIG7 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x52) 0 | Register (0x52) GEN2INT_CONFIG7 | | | | |-------------|-----------------------|---------------------------------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | O ' | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_th_refy_11_8 | | | | | gen2_int_th_refy_11_8: msb of reference y-axis value for evaluation gen2_int_refy = gen2_int_th_refy_7_0 + 256*gen2_int_th_refy_11_8 ### Register (0x53) GEN2INT_CONFIG8 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x53) (| Register (0x53) GEN2INT_CONFIG8 | | | | |-------------|-------------------|---------------------------------|------|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_th_refz_ | 7_0 | 7) | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_th_refz_ | 7_0 | 1.0. | | | gen2_int_th_refz_7_0: lsb of reference z-axis value for evaluation gen2_int_refz = gen2_int_th_refz_7_0 + 256*gen2_int_th_refz_11_8 BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 104 / Confidential #### Register (0x54) GEN2INT_CONFIG9 DESCRIPTION: the registers contain configurations for generic interrupt 1 evaluation RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x54) 0 | Register (0x54) GEN2INT_CONFIG9 | | | | |-------------|-----------------------|---------------------------------|-----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | n/a | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | O ' | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | gen2_int_th_refz_11_8 | | | | | gen2_int_th_refz_11_8: msb of reference z-axis value for evaluation gen2_int_refz = gen2_int_th_refz_7_0 + 256*gen2_int_th_refz_11_8 ### Register (0x55) ACTCH_CONFIG0 DESCRIPTION: Activity changed interrupt configuration registers RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x55) | ACTCH_CONFIG0 | *() | | |-------------|-----------------|---------------|------|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | actch_thres | | 7, | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | actch_thres | | 1.0. | | actch_thres: threshold configuration for activity changed interrupt: 8mg/g resolution Page 105 / Confidential #### Register (0x56) ACTCH_CONFIG1 DESCRIPTION: Activity changed interrupt configuration registers RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x56) A | Register (0x56) ACTCH_CONFIG1 | | | | |-------------|-------------------|-------------------------------|------------|----------------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | actch_z_en | actch_y_en | actch_x_en | actch_data_src | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | actch_npts | (10 | | | | actch npts: number of points for evaluation of the activity: 32, 64, 128, 256, 512 | actch_npts | | | |------------|-----|------------| | 0x00 | 32 | 32 points | | 0x01 | 64 | 64 points | | 0x02 | 128 | 128 points | | 0x03 | 256 | 256 points | | 0x04 | 512 | 512 points | actch_data_src: data source | actch_data_src | | | |----------------|---------------------|--| | 0x00 | actch_use_acc_filt1 | | | 0x01 | actch_use_acc_filt2 | | actch_x_en: activity changed evaluation for x-axis enabled: '0' - not active; '1' - active actch_y_en: activity changed evaluation for y-axis enabled: '0' - not active; '1' - active actch_z_en: activity changed evaluation for z-axis enabled: '0' - not active; '1' - active BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 106 / Confidential #### Register (0x57) TAP_CONFIG DESCRIPTION: tap interrupt configuration registers RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x57) T | Register (0x57) TAP_CONFIG | | | | |-------------|-------------------|----------------------------|-----|----------|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | n/a | n/a | n/a | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | reserved | 9 | | sel_axis | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | sel_axis | tap_sensitivity | | | | tap sensitivity: sensitivity of the tap algorithm 0: highest sensitivity7: lowest sensitivity sel_axis: Modifies the selection of the data provided to the algorithm | sel_axis | | | |----------|---|-----------------| | 0x00 | Z | use Z axis data | | 0x01 | Υ | use Y axis data | | 0x02 | Х | use X axis data | ## Register (0x58) TAP_CONFIG1 DESCRIPTION: tap interrupt configuration registers RESET: 0x06 DEFINITION (Go to register map): | Name | Register (0x5 | Register (0x58) TAP_CONFIG1 | | | |-------------|---------------|-----------------------------|----------|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | n/a | n/a | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | | quiet_dt | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 1 | 1 | 0 | | Content | quiet | quiet | | | tics_th: Maximum time between upper and lower peak of a tap, in data samples this time depends on the machanics of the device tapped onto default = 12 samples Page 107 / Confidential | tics_th | | | |---------|----|--| | 0x00 | 6 | 6 data samples for high-low tap signal change time | | 0x01 | 9 | 9 data samples for high-low tap signal change time | | 0x02 | 12 | 12 data samples for high-low tap signal change time | | 0x03 | 18 | 18 daata samples for high-low tap signal change time | quiet: Minimum quiet time before and after double tap, in data samples This time also defines the longest time interval between two taps so that they are considered as double tap | <u> </u> | | | |----------|-----|---| | quiet | · | | | 0x00 | 60 | 60 data samples quiet tie between single or doube taps | | 0x01 | 80 | 80 data samples quiet tie between single or doube taps | | 0x02 | 100 | 100 data samples quiet tie between single or doube taps | | 0x03 | 120 | 120 data samples quiet tie between single or doube taps | quiet_dt: Minimum time between the two taps of a double tap, in data samples | quiet_dt | | | |----------|----|--| | 0x00 | 4 | 4 data samples minimum time between double taps | | 0x01 | 8 | 8 data samples minimum time between double taps | | 0x02 | 12 | 12 data samples minimum time between double taps | | 0x03 | 16 | 16 data samples minimum time between double taps | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 108 / Confidential ### Register (0x59) STEP_COUNTER_CONFIG0 **DESCRIPTION: Reserved** RESET: 0x01 DEFINITION (Go to register
map): | Name | Register (0x59) STEP_COUNTER_CONFIG0 | | | | | | |-------------|--------------------------------------|------------|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 0 | | | | Content | sccr00 | O ' | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 0 | 1 | | | | Content | sccr00 | '.'() | | | | | ## Register (0x5A) STEP_COUNTER_CONFIG1 **DESCRIPTION: Reserved** RESET: 0x2D DEFINITION (Go to register map): | Name | Register (0x5A) STEP_COUNTER_CONFIG1 | | | | | | |-------------|--------------------------------------|----|----|----|--|--| | Bit | 7 | 6 | 5 | 4 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 0 | 0 | 1 | 0 | | | | Content | sccr01 | • | | | | | | Bit | 3 | 2 | 1 | 0 | | | | Read/Write | RW | RW | RW | RW | | | | Reset Value | 1 | 1 | 0 | 1 | | | | Content | sccr01 | 5 | | | | | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 109 / Confidential ### Register (0x5B) STEP_COUNTER_CONFIG2 **DESCRIPTION: Reserved** RESET: 0x7B DEFINITION (Go to register map): | Name | Register (0x5B) STEP_COUNTER_CONFIG2 | | | | |-------------|--------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 1 | 1 | 1 | | Content | sccr02 | 9 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 0 | 1 | 1 | | Content | sccr02 | 1,10 | | | ### Register (0x5C) STEP_COUNTER_CONFIG3 **DESCRIPTION: Reserved** RESET: 0xD4 DEFINITION (Go to register map): | Name | Register (0x5C) | Register (0x5C) STEP_COUNTER_CONFIG3 | | | | |-------------|-----------------|--------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 1 | 0 | 1 | | | Content | sccr03 | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1 | 0 | 0 | | | Content | sccr03 | | | 10 | | Page 110 / Confidential ### Register (0x5D) STEP_COUNTER_CONFIG4 **DESCRIPTION: Reserved** RESET: 0x44 DEFINITION (Go to register map): | Name | Register (0x5D) S | Register (0x5D) STEP_COUNTER_CONFIG4 | | | | |-------------|-------------------|--------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1 | 0 | 0 | | | Content | sccr04 | 0 | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1 | 0 | 0 | | | Content | sccr04 | (10) | | | | ### Register (0x5E) STEP_COUNTER_CONFIG5 **DESCRIPTION: Reserved** RESET: 0x01 DEFINITION (Go to register map): | Name | Register (0x5E) \$ | Register (0x5E) STEP_COUNTER_CONFIG5 | | | | |-------------|--------------------|--------------------------------------|----|-----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | sccr05 | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 1 | | | Content | sccr05 | 01 | | 10. | | Page 111 / Confidential ### Register (0x5F) STEP_COUNTER_CONFIG6 **DESCRIPTION: Reserved** RESET: 0x3B DEFINITION (Go to register map): | Name | Register (0x5F) STEP_COUNTER_CONFIG6 | | | | |-------------|--------------------------------------|-----|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 1 | 1 | | Content | sccr06 | 9 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 0 | 1 | 1 | | Content | sccr06 | 4.0 | | | ### Register (0x60) STEP_COUNTER_CONFIG7 **DESCRIPTION: Reserved** RESET: 0x7A DEFINITION (Go to register map): | Name | Register (0x60) S | Register (0x60) STEP_COUNTER_CONFIG7 | | | | |-------------|-------------------|--------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1.0 | 1 | 1 | | | Content | sccr07 | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 0 | 1 | 0 | | | Content | sccr07 | 01 | | 10 | | Page 112 / Confidential ### Register (0x61) STEP_COUNTER_CONFIG8 **DESCRIPTION: Reserved** **RESET: 0xDB** DEFINITION (Go to register map): | Name | Register (0x61) S | Register (0x61) STEP_COUNTER_CONFIG8 | | | | |-------------|-------------------|--------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 1 | 0 | 1 | | | Content | sccr08 | O' | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 0 | 1 | 1 | | | Content | sccr08 | (10 | | | | ### Register (0x62) STEP_COUNTER_CONFIG9 **DESCRIPTION: Reserved** RESET: 0x7B | Name | Register (0x62) S | Register (0x62) STEP_COUNTER_CONFIG9 | | | | |-------------|-------------------|--------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1 | 1 | 1 | | | Content | sccr09 | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 0 | 1 | 1 | | | Content | sccr09 | - 01 | | | | Page 113 / Confidential ### Register (0x63) STEP_COUNTER_CONFIG10 **DESCRIPTION: Reserved** RESET: 0x3F DEFINITION (Go to register map): | Name | Register (0x63) STEP_COUNTER_CONFIG10 | | | | |-------------|---------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 1 | 1 | | Content | sccr10 | 9 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1 | 1 | 1 | | Content | sccr10 | 1,10 | | | ### Register (0x64) STEP_COUNTER_CONFIG11 **DESCRIPTION: Reserved** RESET: 0x6C | Name | Register (0x64) STEP_COUNTER_CONFIG11 | | | | |-------------|---------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 1 | 1 | 0 | | Content | sccr11 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1 | 0 | 0 | | Content | sccr11 | - 01 | | | Page 114 / Confidential ### Register (0x65) STEP_COUNTER_CONFIG12 **DESCRIPTION: Reserved** RESET: 0xCD DEFINITION (Go to register map): | Name | Register (0x65) S | Register (0x65) STEP_COUNTER_CONFIG12 | | | | |-------------|-------------------|---------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 1 | 0 | 0 | | | Content | sccr12 | O ' | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 1 | 0 | 1 | | | Content | sccr12 | '.'() | | | | ### Register (0x66) STEP_COUNTER_CONFIG13 **DESCRIPTION: Reserved** RESET: 0x27 | Name | Register (0x66) STEP_COUNTER_CONFIG13 | | | | |-------------|---------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 1 | 0 | | Content | sccr13 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 1 | 1 | 1 | | Content | sccr13 | - 01 | | | Page 115 / Confidential ### Register (0x67) STEP_COUNTER_CONFIG14 **DESCRIPTION: Reserved** RESET: 0x19 DEFINITION (Go to register map): | Name | Register (0x67) STEP_COUNTER_CONFIG14 | | | | |-------------|---------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 1 | | Content | sccr14 | 9 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 0 | 0 | 1 | | Content | sccr14 | 4,70 | | | ### Register (0x68) STEP_COUNTER_CONFIG15 **DESCRIPTION: Reserved** RESET: 0x96 | Name | Register (0x68) S | Register (0x68) STEP_COUNTER_CONFIG15 | | | | |-------------|-------------------|---------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 0 | 0 | 1 | | | Content | sccr15 | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1 | 1 | 0 | | | Content | sccr15 | - 01 | | | | Page 116 / Confidential ### Register (0x69) STEP_COUNTER_CONFIG16 **DESCRIPTION: Reserved** RESET: 0xA0 DEFINITION (Go to register map): | Name | Register (0x69) STEP_COUNTER_CONFIG16 | | | | |-------------|---------------------------------------|------------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 0 | 1 | 0 | | Content | sccr16 | O ' | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | sccr16 | 4,70 | | | ### Register (0x6A) STEP_COUNTER_CONFIG17 **DESCRIPTION: Reserved** RESET: 0xC3 | Name | me Register (0x6A) STEP_COUNTER_CONFIG17 | | | | |-------------|--|-------|----------|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1.0 | 0 | 0 | | Content | sccr17 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 1 | 1 | | Content | sccr17 | _ (?) | | | | | | | dertilal | | Page 117 / Confidential ### Register (0x6B) STEP_COUNTER_CONFIG18 **DESCRIPTION: Reserved** RESET: 0x0E DEFINITION (Go to register map): | Name | Register (0x6B) STEP_COUNTER_CONFIG18 | | | | |-------------|---------------------------------------|------------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | sccr18 | O ' | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1 | 1 | 0 | | Content | sccr18 | | | | ### Register (0x6C) STEP_COUNTER_CONFIG19 **DESCRIPTION: Reserved** RESET: 0x0C | Name | Register (0x6C) STEP_COUNTER_CONFIG19 | | | | |-------------|---------------------------------------|-----|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | |
Reset Value | 0 | 0 | 0 | 0 | | Content | sccr19 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1 | 0 | 0 | | Content | sccr19 | _01 | | 0 | Page 118 / Confidential ### Register (0x6D) STEP_COUNTER_CONFIG20 **DESCRIPTION: Reserved** RESET: 0x3C DEFINITION (Go to register map): | Name | Register (0x6D) STEP_COUNTER_CONFIG20 | | | | |-------------|---------------------------------------|-----|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 1 | 1 | | Content | sccr20 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1 | 0 | 0 | | Content | sccr20 | (10 | | | ### Register (0x6E) STEP_COUNTER_CONFIG21 **DESCRIPTION: Reserved** RESET: 0xF0 | Name | Register (0x6E) STEP_COUNTER_CONFIG21 | | | | |-------------|---------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 1 | 1 | 1 | 1 | | Content | sccr21 | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | sccr21 | - 01 | | | Page 119 / Confidential #### Register (0x6F) STEP_COUNTER_CONFIG22 **DESCRIPTION: Reserved** RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x6F) STEP_COUNTER_CONFIG22 | | | | |-------------|---------------------------------------|------|----|----| | Bit | 7 | 6 | 5 | 4 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | sccr22 | 9 | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | RW | RW | RW | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | sccr22 | (10) | | | ### Register (0x70) STEP_COUNTER_CONFIG23 **DESCRIPTION: Reserved** RESET: 0xF7 | Name | Register (0x70) S | Register (0x70) STEP_COUNTER_CONFIG23 | | | | |-------------|-------------------|---------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 1 | 1 | 1 | 1 | | | Content | sccr23 | | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 1 | 1 | 1 | | | Content | sccr23 | - 01 | | | | Page 120 / Confidential #### Register (0x71) STEP_COUNTER_CONFIG24 **DESCRIPTION: Reserved** RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x71) S | Register (0x71) STEP_COUNTER_CONFIG24 | | | | |-------------|-------------------|---------------------------------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | sccr24 | O' | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | sccr24 | (10 | | | | ### Register (0x7C) IF_CONF **DESCRIPTION: Serial interface settings** RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x7C) I | F_CONF | | | |-------------|-------------------|--------|-----|------| | Bit | 7 | 6 | 5 | 4 | | Read/Write | n/a | n/a | n/a | n/a | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | | | | | Bit | 3 | 2 | 1 | 0 | | Read/Write | n/a | n/a | n/a | RW | | Reset Value | 0 | 0 | 0 | 0 | | Content | reserved | _01 | | spi3 | spi3: Configure SPI Interface Mode for primary interface | spi3 | | | |------|------|-----------------| | 0x00 | spi4 | SPI 4-wire mode | | 0x01 | spi3 | SPI 3-wire mode | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 121 / Confidential #### Register (0x7D) SELF_TEST DESCRIPTION: Settings for the sensor self-test configuration and trigger RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x7D) S | Register (0x7D) SELF_TEST | | | | | | |-------------|-------------------|---------------------------|------------------|------------------|--|--|--| | Bit | 7 | 6 | 5 | 4 | | | | | Read/Write | n/a | n/a | n/a | n/a | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | reserved | O ' | | | | | | | Bit | 3 | 2 | 1 | 0 | | | | | Read/Write | RW | RW | RW | RW | | | | | Reset Value | 0 | 0 | 0 | 0 | | | | | Content | acc_self_test_si | acc_self_test_en | acc_self_test_en | acc_self_test_en | | | | | | gn | _Z | _y | _x | | | | acc_self_test_en_x: trigger self test for X axis | acc_self_test_en_x | | | |--------------------|----------|----------| | 0x00 | disabled | disabled | | 0x01 | enabled | enabled | acc_self_test_en_y: trigger self test for Y axis | acc_self_test_en_y | | | |--------------------|----------|----------| | 0x00 | disabled | disabled | | 0x01 | enabled | enabled | acc_self_test_en_z: trigger self test for Z axis | acc_self_test_en_z | | | |--------------------|----------|----------| | 0x00 | disabled | disabled | | 0x01 | enabled | enabled | acc_self_test_sign: select sign of self-test excitation | acc_self_test_sign | | | |--------------------|----------|----------| | 0x00 | negative | negative | | 0x01 | positive | positive | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 122 / Confidential #### Register (0x7E) CMD **DESCRIPTION: Command Register** RESET: 0x00 DEFINITION (Go to register map): | Name | Register (0x7E) CMD | | | | | |-------------|---------------------|------------|----|----|--| | Bit | 7 | 6 | 5 | 4 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | cmd | O " | | | | | Bit | 3 | 2 | 1 | 0 | | | Read/Write | RW | RW | RW | RW | | | Reset Value | 0 | 0 | 0 | 0 | | | Content | cmd | (10 | | | | cmd: Available commands (Note: Register will always read as 0x00): | cmd | | | |------|----------------|--| | 0x00 | nop | reserved. No command. | | 0xb0 | fifo_flush | Clears all data in the FIFO, does not change FIFO_CONFIG and FIFO_DOWNS registers | | 0xb1 | step_cnt_clear | Clears the value of the step counter to 0 | | 0xb6 | softreset | Triggers a reset, all user configuration settings are overwritten with their default state | The device supports a command set to trigger certain activities and state transitions of the device. The command interpreter is connected to register *cmd*. A command is invoked if the corresponding Opcode is written to the *cmd* register. Writing an undefined command to register cmd has no effect and cmd_err='0' in this case. The device implements a simple handshaking mechanism to signal its readiness for accepting a new command. Prior to writing a new command to the *cmd* register the user must read the status bit *cmd_rdy*: cmd_rdy = '1': device is ready to accept a command cmd_rdy = '0': a command is being executed, any new command is ignored *cmd_err* is set to '1' when command execution failed. *cmd_err* is reset to '0' if the last command execution was successful. This is a clear-on-read bit. After the softreset command has been invoked, status and error register are updated after *Tst_up*. Page 123 / Confidential ### 6. Digital Interfaces #### 6.1. Interface By default, the BMA400 operates in I2C mode. The BMA400 interface can also be configured to operate in a SPI 4-wire configuration. It can also be re-configured by software to work in 3-wire mode instead of 4-wire mode. All 3 possible digital interfaces share partly the same pins. The mapping for the primary interface of the BMA400 is given in the following table: | Pin# | Name | I/O Type | Description | Conr | Connect to (Primary IF) | | | | | |------|------|-------------|---|---------------------|-------------------------|----------------------------------|--|--|--| | | | | | in SPI4W | in SPI3W | in I2C | | | | | 1 | SDO | Digital I/O | Serial data output in SPI
Address select in I ² C mode
see chapter 7.2 | SDO | DNC (float) | GND for
default I2C
addr. | | | | | 2 | SDX | Digital I/O | SDA serial data I/O in I ² C
SDI serial data input in SPI 4W
SDA serial data I/O in SPI 3W | SDI | SDA | SDA | | | | | 5 | INT1 | Digital I/O | Interrupt output 1 (default) (Input for external FIFO sync) * | INT1
(FIFO sync) | INT1
(FIFO sync) | INT1
(FIFO sync) | | | | | 6 | INT2 | Digital I/O | Interrupt output 2 (default) (Input for external FIFO sync) * | INT2
(FIFO sync) | INT2
(FIFO sync) | INT2
(FIFO sync) | | | | | 10 | CSB | Digital in | Chip select for SPI mode | CSB | CSB | V _{DDIO} or DNC (float) | | | | | 12 | SCX | Digital in | SCK for SPI serial clock
SCL for I ² C serial clock | SCK | SCK | SCL | | | | ^{*} INT1 and/or INT2 can also be configured as an input in case the external data synchronization in FIFO is used. See chapter 0. If INT1 and/or INT2 are not used, please do not connect them (DNC). The following table shows the electrical specifications of the interface pins: | Parameter | Symbol | Condition | Min | Тур | Max | Units | |---|-----------------|--|-----|-----|-----|-------| | Pull-up Resistance,
CSB pin | R _{up} | Internal Pull-up
Resistance to
VDDIO | 75 | 100 | TBD | kΩ | | Input Capacitance | C_{in} | | | | 5 | pF | | I ² C Bus Load
Capacitance (max.
drive capability) | C_{I2C_Load} | 5.5 | S | | TBD | pF | Page 124 / Confidential #### 6.2. Interface I2C/SPI Protocol Selection The protocol is automatically selected based on the chip select CSB pin behavior after power-up. At reset / power-up, BMA400 is in I2C mode. If CSB is connected to VDDIO during power-up and not changed the sensor interface works in I2C mode. For using I2C, it is recommended to hard-wire the CSB line to VDDIO. Since power-on-reset is only executed when both VDD and VDDIO are established, there is no risk of incorrect protocol detection due to power-up sequence. If CSB sees a rising edge after power-up, the BMA400 interface switches to SPI until a reset or the next power-up occurs. Therefore, a CSB rising edge is needed before starting the SPI communication.
Hence, it is mandatory to perform a SPI single read of e.g. register CHIP_ID (the obtained value will be invalid) before the actual communication start, in order to use the SPI interface. #### 6.3. SPI interface and protocol The timing specification for SPI of the BMA400 is given in the following table: SPI timing, valid at $V_{DDIO} \ge 1.71V$ | Parameter | Symbol | Condition | Min | Max | Units | |------------------|------------------------|--------------------------------------|-----|--------------|-------| | Clock Frequency | f _{SPI} | Max. Load on SDI or SDO = | | 10 | MHz | | CO | | 25pF, V _{DDIO} ≥ 1.71 V | | $O_{j'_{2}}$ | | | | | $V_{DDIO} < 1.71V$ | | 6 | MHz | | SCK Low Pulse | tsckL | | 48 | | ns | | SCK High Pulse | t _{sckh} | | 48 | | ns | | SDI Setup Time | t _{SDI_setup} | | 20 | | ns | | SDI Hold Time | t _{SDI_hold} | | 20 | | ns | | SDO Output Delay | tsDO_OD | Load = $30pF$, $V_{DDIO} \ge 1.62V$ | | 30 | ns | | CSB Setup Time | t _{CSB_setup} | 6 | 20 | | ns | | CSB Hold Time | t_{CSB_hold} | | 40 | 0 | ns | | | | | | | | Page 125 / Confidential The following figure shows the definition of the SPI timings: SPI timing diagram The SPI interface of the BMA400 is compatible with two modes, '00' [CPOL = '0' and CPHA = '0'] and '11' [CPOL = '1' and CPHA = '1']. The automatic selection between '00' and '11' is controlled based on the value of SCK after a falling edge of CSB. Two configurations of the SPI interface are supported by the BMA400: 4-wire and 3-wire. The same protocol is used by both configurations. The device operates in 4-wire configuration by default. It can be switched to 3-wire configuration by writing IF CONF.spi3 = 0b1. Pin SDI is used as the common data pin in 3-wire configuration. For single byte read as well as write operations, 8-bit protocols are used. The BMA400 also supports multiple-byte read and write operations. In SPI 4-wire configuration CSB (chip select low active), SCK (serial clock), SDI (serial data input), and SDO (serial data output) pins are used. The communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI and SDO are driven at the falling edge of SCK and should be captured at the rising edge of SCK. The basic write operation waveform for 4-wire configuration is depicted in the following figure. During the entire write cycle SDO remains in high-impedance state. Page 126 / Confidential 4-wire basic SPI write sequence (mode '00') Multiple write operations are possible by keeping CSB low and continuing the data transfer. Every data must be preceded by R/W flag and address, there is no address auto-increment like in burst read mode. The principle of multiple write is shown in figure below: SPI multiple write The basic read operation waveform for 4-wire configuration is depicted in the figure below. Please note that the first byte received from the BMA400 via the SDO line correspond to a dummy byte and the 2nd byte correspond to the value read out of the specified register address. That means, for a basic read operation two bytes have to be read and the first has to be dropped and the second byte must be interpreted. Page 127 / Confidential 4-wire basic SPI read sequence (mode '00') The data bits are used as follows: R/W: Read/Write bit. When 0, the data SDI is written into the chip. When 1, the data SDO from the chip is read. AD6-AD0: Address DI7-DI0: When in write mode, these are the data SDI, which will be written into the address. DO7-DO0: When in read mode, these are the data SDO, which are read from the address. Multiple read operations are possible by keeping CSB low and continuing the data transfer. Only the first register address has to be written. Addresses are automatically incremented after each read access as long as CSB stays active low. Please note that the first byte received from the BMA400 via the SDO line correspond to a dummy byte and the 2nd byte correspond to the value read out of the specified register address. The successive bytes read out correspond to values of incremented register addresses. That means, for a multiple read operation of n bytes, n+1 bytes have to be read, the first has to be dropped and the successive bytes must be interpreted. When reaching address FIFO_DATA, auto-increment stops, and the FIFO is read bytewise. **In SPI 3-wire configuration** CSB (chip select low active), SCK (serial clock), and SDI (serial data input and output) pins are used. While SCK is high, the communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI is driven (when used as input of the device) at the falling edge of SCK and should be captured (when used as the output of the device) at the rising edge of SCK. The protocol as such is the same in 3-wire configuration as it is in 4-wire configuration. The basic operation wave-form (read or write access) for 3-wire configuration is depicted in the figure below: Page 128 / Confidential 3-wire basic SPI read or write sequence (mode '11') Page 129 / Confidential #### 6.4. Primary I2C Interface The I²C bus uses SCL (= SCx pin, serial clock) and SDA (= SDx pin, serial data input and output) signal lines. Both lines are connected to V_{DDIO} externally via pull-up resistors so that they are pulled high when the bus is free. The default I²C address of the device is b001010X. 'X' is defined by the SDO pin: if SDO pulled to 'GND' X equals 0, is SDO is pulled to VDDIO, X equals 1. In I2C, the SDO level must be defined, it cannot be left floating. The I²C interface of the BMA400 is compatible with the I²C Specification UM10204 Rev. 06 (April 2014), available at http://www.nxp.com. The BMA400 supports I²C standard mode and fast mode, only 7-bit address mode is supported. For $V_{DDIO} = 1.2V$ to 1.62 V the guaranteed voltage output levels are slightly relaxed as described in Table 1 of the electrical specification section. BMA400 also supports an **extended I²C mode** that allows using clock frequencies up to 3.4 MHz. In this mode all timings of the fast mode apply and it additionally supports clock frequencies up to 3.4MHz. The timing specification for I²C of the BMA400 is given in the following table: | Parameter | Symbol | Condition | Min | Max | Units | |--|--------------------------|-------------------|-----|----------|-------| | Clock Frequency | f _{SCL} | | | 3400 | kHz | | SCL Low Period | t _{LOW} | | 1.3 | | | | SCL High Period | t _{HIGH} | ~ 0 | 0.6 | | | | SDA Setup Time | t _{SUDAT} | | 0.1 | | | | SDA Hold Time | t _{HDDAT} | .0. | 0.0 |) | | | Setup Time for a repeated Start Condition | t susta | | 0.6 | | 796 | | Hold Time for a Start
Condition | tHDSTA | 000 | 0.6 | | 7), | | Setup Time for a Stop
Condition | t _{susтo} | CO | 0.6 | 100 | | | Time before a new
Transmission can | t _{BUF} | low power
mode | 400 | 0. | μs | | start | | normal mode | 1.3 | | | | Idle time between write accesses, | t _{IDLE_wacc_n} | low power
mode | 400 | | | | normal mode, standby
mode, low-power
mode | m | normal mode | 1.3 | | | | Idle time between write accesses, suspend mode, low-power mode | t _{IDLE_wacc_s} | 20, | 400 | | | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 130 / Confidential #### The figure below shows the definition of the I²C timings I2C timing diagram The I2C protocol works as follows: **START**: Data transmission on the bus begins with a high to low transition on the SDA line while SCL is held high (start condition (S) indicated by I²C bus master). Once the START signal is transferred by the master, the bus is considered busy. **STOP**: Each data transfer should be terminated by a Stop signal (P) generated by master. The STOP condition is a low to high transition on SDA line while SCL is held high. **ACKS:** Each byte of data transferred must be acknowledged. It is indicated by an acknowledge bit sent by the receiver. The transmitter must release the SDA line (no pull down) during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle. In the following diagrams these abbreviations are used: S Start P Stop ACKS Acknowledge by slave ACKM Acknowledge by master NACKM Not acknowledge by master RW Read / Write A START immediately followed by a STOP (without SCL toggling from 'VDDIO' to 'GND') is not supported. If such a combination occurs, the STOP is not recognized by the device. Page 131 / Confidential #### I²C write access: I²C write access can be used to write a data byte in one sequence. The sequence begins with start condition generated by the master, followed by 7 bits slave address and a write bit (RW = 0). The slave sends an acknowledge bit (ACKS = 0) and releases the bus. Then the master sends the one byte register address. The slave again acknowledges the transmission and waits for the 8 bits of data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol. Example of an I2C write access: | Start | | | Slav | e Ad | ress | | | R/W | ACK | | | Reg | ister | addre | ess ((|)x41) | | ACK | | | Regi | ster d | lata (| 0x01) | | | ACK | Stop | |-------|------|-------|------|------|------|---|--------|--------|-------|-------|------|------|-------|-------|--------|-------|---|-----|---|---|------|--------|--------|-------|---|---|-----|------| | | 0 | 0 | 1 | 0 | 1 | 0 | S | 0 | | L | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | | Mas | ster | -> S | lave | | | S | defin | ned b | y SD | 0 | Slav | /e -> | Ma | ster | | | L: tie | e to L | .OW, | not p | oart | of a | ddre | ss | | |
 | | | | |) * | | | | | | I2C write Multi-byte writes are supported without restriction on normal registers | Start | | | Siav | e Au | ress | | | K/VV | ACK | | | Reg | ister | addie | 355 (C | JX4 I) | | ACK | | | Regi | ster c | iaia (| UXU I) |) | | ACK | | |-------|---|-----|-------|-------|------|---|---|------|-----|---|---|-----|-------|-------|--------|---------|---|-----|---|---|------|--------|--------|--------|---|---|-----|------| | | 0 | 0 | 1 | 0 | 1 | 0 | S | 0 | | L | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | 76.7 | | | | | | | | |) | Ма | ster- | ->Sla | ave | | | | | | | Reg | ister | addre | ess (0 |)x42) | | ACK | | | Regi | ster c | lata (| 0x01) |) | | ACK | Stop | | | | Sla | ve-> | Mas | ster | | | | | L | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | #### I²C read access: I²C read access also can be used to read one or multiple data bytes in one sequence. A read sequence consists of a one-byte I²C write phase followed by the I²C read phase. The two parts of the transmission must be separated by a repeated start condition (S). The I²C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (RW = 1). Then the master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACKS = 0) to enable further data transfer. A NACKM (ACKS = 1) from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission. The register address is automatically incremented and, therefore, more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified since the latest I²C write command. By default the start address is set at 0x00. In this way repetitive multi-bytes reads from the same starting address are possible. BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 132 / Confidential | Start | | | Slav | ∕e Ad | ress | | | R/W | ACK | | | Reg | jister | addre | ess (0 |)x05) | | ACK | |-------|---|---|------|-------|------|---|---|-----|-----|---|---|-----|--------|-------|--------|-------|---|-----| | | 0 | 0 | 1 | 0 | 1 | 0 | S | 0 | | L | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | | Start | | | Slav | ∕e Ad | ress | | | R/W | ACK | | Reg | jister | data | - add | ress | 0x05 | | ACK | | Reg | ister | data · | - add | ress (| 0x06 | | NACK | Stop | |-------|---|---|------|-------|------|---|---|-----|-----|----|-----|--------|------|-------|------|------|----|-----|----|-----|-------|--------|-------|--------|------|----|------|------| | | 0 | 0 | 1 | 0 | 1 | 0 | S | 1 | | d7 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | | d7 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | | | Master->Slave Slave->Master BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 133 / Confidential ### 7. Pin-out and Connection Diagrams #### 7.1. Pin-out #### Pin description | D:# | Nama | I/O Truns | Description | | Connect to | | |------|-------|-------------|---|---------------------|---------------------|---------------------------| | Pin# | Name | I/O Type | Description | in SPI 4W | In SPI 3W | in I ² C | | 1 | SDO | Digital I/O | Serial data output in SPI
Address select in I ² C mode
see chapter 7.2 | SDO | DNC (float) | GND for default I2C addr. | | 2 | SDX | Digital I/O | SDA serial data I/O in I ² C
SDI serial data input in SPI 4W
SDA serial data I/O in SPI 3W | SDI | SDA | SDA | | 3 | VDDIO | Supply | Digital I/O supply voltage (1.2V 3.6V) | V _{DDIO} | V _{DDIO} | V _{DDIO} | | 4 | NC | | . 0 | | O * | | | 5 | INT1 | Digital I/O | Interrupt output 1 (default) | INT1
(FIFO sync) | INT1
(FIFO sync) | INT1
(FIFO sync) | | 6 | INT2 | Digital I/O | Interrupt output 2 (default) | INT2
(FIFO sync) | INT2
(FIFO sync) | INT2
(FIFO sync) | | 7 | VDD | Supply | Power supply for analog & digital domain (1.62V 3.6V) | V _{DD} | V _{DD} | V_{DD} | | 8 | GNDIO | Ground | Ground for I/O | GND | GND | GND | | 9 | GND | Ground | Ground for digital & analog | GND | GND | GND | | 10 | CSB | Digital in | Chip select for SPI mode | CSB | CSB | DNC (float) | | 11 | NC | | | 77.0 | | | | 12 | SCX | Digital in | SCK for SPI serial clock
SCL for I ² C serial clock | SCK | SCK | SCL | BST-BMA400-DS000-00 | Version 0.1 | November 2017 Page 134 / Confidential #### 7.2. Connection Diagrams #### SPI 3-wire It is recommended to use 100nF decoupling capacitors at pin 3 (VDDIO) and pin 7 (VDD). #### 4-wire It is recommended to use 100nF decoupling capacitors at pin 3 (VDDIO) and pin 7 (VDD). Page 135 / Confidential I2C It is recommended to use 100nF decoupling capacitors at pin 3 (VDDIO) and pin 7 (VDD). ### 8. Package #### 8.1. Package outline dimensions Page 137 / Confidential #### 8.2. Sensing axis orientation If the sensor is accelerated in the indicated directions, the corresponding channel will deliver a positive acceleration signal (dynamic acceleration). If the sensor is at rest and the force of gravity is acting along the indicated directions, the output of the corresponding channel will be negative (static acceleration). Example: If the sensor is at rest or at uniform motion in a gravity field according to the figure given below, the output signals are: - ± 0g for the X channel - ± 0g for the Y channel - + 1g for the Z channel The following table lists all corresponding output signals on X, Y, and Z while the sensor is at rest or at uniform motion in a gravity field under assumption of a $\pm 4g$ range setting, a 16 bit resolution, and a top down gravity vector as shown above. | Sensor Orientation
(gravity vector ↓) | | • | | | unright | trigirqu | |--|---------------|-------------|-------------|---------------|-------------|---------------| | Output Signal X | 0g/0LSB | 1g/1024 LSB | 0g/0LSB | -1g/-1024 LSB | 0g/0LSB | 0g/0LSB | | Output Signal Y | -1g/-1024 LSB | 0g/0LSB | 1g/1024 LSB | 0g/0LSB | 0g/0LSB | 0g/0LSB | | Output Signal Z | 0g/0 LSB | 0g/0LSB | 0g/0LSB | 0g/0LSB | 1g/1024 LSB | -1g/-1024 LSB | Page 138 / Confidential For reference the figure below shows the device orientation with an integrated BMA400. Page 139 / Confidential #### 8.3. Landing pattern recommendation The recommended landing pattern for the BMA400 on customer's PCB is given in the following figure. It is recommended to avoid any wiring underneath the BMA400 (shaded area). Landing pattern recommendation Page 140 / Confidential #### 8.4. Marking Marking of Engineering Samples(A,C) BMA400 | | Labeling | Name | Symbol | Remark | |----------------|-------------|------------------------------|----------|---| | | | Sub-con ID | x | internal use only | | Top view | • XE
NCC | Eng. sample ID | E | Identifies Engineering Samples | | 5 | 1 2 3 4 | Sample ID | NCC | 'N' to be replaced by 'A','C', sample status
'CC' defines lot number | | Bottom
view | 12 5 | Pin 1 identifier top side | <u> </u> | | | | 10 9 8 7 | Pin 1 identifier bottom side | 55 | Triangle points in the direction of pin 1 | Marking of Mass Production Samples BMA400 | | Labeling | Name | Symbol | Remark | |----------------|---------------|------------------------------|--------|---| | Top view | • ZZ | Supply chain ID | ZZ | internal use only | | | CCC | Counter ID | ccc | 3 alphanumeric digits, variable to generate trace-code. | | Bottom
view | 1 2 3 4 | Pin 1 identifier top side | • | | | view | 11 6 10 9 8 7 | Pin 1 identifier bottom side | | Triangle points in the direction of pin 1 | Page 141 / Confidential #### 8.5. Soldering guidelines The moisture sensitivity level of the BMA400 sensors corresponds to JEDEC Level 1, see also - IPC/JEDEC J-STD-020C "Joint Industry Standard: Moisture/Reflow Sensitivity Classification for non-hermetic Solid State Surface Mount Devices" - IPC/JEDEC J-STD-033A "Joint Industry Standard: Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices" The sensor fulfils the lead-free soldering requirements of the above-mentioned IPC/JEDEC standard, i.e. reflow soldering with a peak temperature up to 260°C. | Profile Feature | | Pb-Free Assembly | |---|---|------------------------------------| | Average Ramp-Up Rate
(Ts _{max} to Tp) | | 3° C/second max | | Preheat - Temperature Min (Ts _{min}) - Temperature Max (Ts _{max}) - Time (ts _{min} to ts _{max}) | | 150 °C
200 °C
60-180 seconds | | Time maintained above: - Temperature (T _L) - Time (I _L) | 6 | 217 °C
60-150 seconds | | Peak/Classification Temperature (Tp) | | 260 °C | | Time within 5 °C of actual Péak
Temperature (tp) | | 20-40 seconds | | Ramp-Down Rate | | 6 °C/second max. | | Time 25 °C to Peak Temperature | | 8 minutes max | | | | | Note 1: All temperatures refer to topside of the package, measured on the package body surface. Page 142 / Confidential #### 8.6. Handling instructions Micromechanical sensors are designed to sense acceleration with high accuracy even at low amplitudes and contain highly sensitive structures inside the sensor element. The MEMS sensor can tolerate mechanical shocks up to several thousand g's. However, these limits might be exceeded in conditions with extreme shock loads such as e.g. hammer blow on or next to the sensor, dropping of the sensor onto hard surfaces etc. We recommend to
avoid g-forces beyond the specified limits during transport, handling and mounting of the sensors in a defined and qualified installation process. This device has built-in protections against high electrostatic discharges or electric fields (e.g. 2kV HBM); however, anti-static precautions should be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range. Unused inputs must always be tied to a defined logic voltage level. Page 143 / Confidential #### 8.7. Environmental safety The BMA400 sensor meets the requirements of the EC restriction of hazardous substances (RoHS) directive, see also: Directive 2011/65/EU of the European Parliament and of the Council of 8 September 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. #### Halogen content The BMA400 is halogen-free. For more details on the corresponding analysis results please contact your Bosch Sensortec representative. #### Internal package structure Within the scope of Bosch Sensortec's ambition to improve its products and secure the mass product supply, Bosch Sensortec qualifies additional sources (e.g. 2nd source) for the LGA package of the BMA400. While Bosch Sensortec took care that all of the technical packages parameters are described above are 100% identical for all sources, there can be differences in the chemical content and the internal structural between the different package sources. However, as secured by the extensive product qualification process of Bosch Sensortec, this has no impact to the usage or to the quality of the BMA400 product. Page 144 / Confidential ### 9. Legal disclaimer #### 9.1. Engineering samples Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid technical specifications of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples. #### 9.2. Product use Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this product data sheet. They are not fit for use in life-sustaining or security sensitive systems. Security sensitive systems are those for which a malfunction is expected to lead to bodily harm or significant property damage. In addition, they are not fit for use in products which interact with motor vehicle systems. The resale and/or use of products are at the purchaser's own risk and his own responsibility. The examination of fitness for the intended use is the sole responsibility of the Purchaser. The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in connection with such claims. The purchaser must monitor the market for the purchased products, particularly with regard to product safety, and inform Bosch Sensortec without delay of all security relevant incidents. #### 9.3. Application examples and hints With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality, performance or error has been made. Page 145 / Confidential ### 10.Document history and modification | Rev. No | Chapter | Description of modification/changes | Date | |---------|---------|-------------------------------------|-------------| | 0.1 | | Document creation | 03 Nov 2017 | Bosch Sensortec GmbH Gerhard-Kindler-Strasse 9 72770 Reutlingen / Germany contact@bosch-sensortec.com www.bosch-sensortec.com Modifications reserved | Printed in Germany Specifications subject to change without notice Document number: BST-BMA400-DS000-00 Revision_0.1_November_2017 BST-BMA400-DS000-00 | Version 0.1 | November 2017